First-Principles Study of the Mechanical Properties of (Ti,V)C Solid Solutions
DOI:
https://doi.org/10.15330/pcss.26.2.377-385Keywords:
Titanium vanadium carbide, density functional theory, cluster expansion, hardness prediction, electronic structureAbstract
Ternary transition metal carbides like Ti1-xVxC offer potential for enhanced mechanical properties, but exploring the vast compositional space is challenging. This study employs first-principles calculations combined with the Cluster Expansion (CE) method to systematically investigate the phase stability, elastic properties, hardness, and electronic structure of the Ti1-xVxC system. Density Functional Theory (DFT) calculations using VASP informed the CE model constructed via the ATAT toolkit, which predicted several stable intermediate configurations at 0 K relative to TiC and VC. Elastic constants calculated for these stable phases revealed non-monotonic trends, with Shear (G) and Young's (E) moduli peaking near x = 0.5. Vickers hardness (Hv), estimated by averaging five empirical models based on calculated Bulk (B) and G moduli, was found to reach a maximum of approximately 32.6 GPa at the Ti0.67V0.33C composition, surpassing the calculated values for the binary endpoints. Analysis of Pugh's ratio (B/G) indicated intrinsic brittleness across all compositions, with maximum brittleness correlating with the region of maximum stiffness. Electronic structure calculations (DOS, ELF, Deformation Density) using the BAND code confirmed strong covalent p-d hybridization as the origin of the high stiffness and revealed composition-dependent changes related to Fermi level shifts. This work identifies Ti0.67V0.33C as the most promising composition for maximizing hardness in this system and provides theoretical guidance for designing advanced carbide-based materials.
References
T. Qin, Z. Wang, Y. Wang, F. Besenbacher, M. Otyepka, and M. Dong, Recent Progress in Emerging Two-Dimensional Transition Metal Carbides References, Nano-Micro Lett. 13, 143 (2021); https://doi.org/10.1007/s40820-021-00710-7.
P. Prysyazhnyuk, O. Ivanov, O. Matvienkiv, S. Marynenko, O. Korol, and I. Koval, Impact and abrasion wear resistance of the hardfacings based on high-manganese steel reinforced with multicomponent carbides of Ti-Nb-Mo-V-C system, Procedia Struct. Integr. 36, 130 (2022); https://doi.org/10.1016/j.prostr.2022.01.014.
S. T. A. Shihab, P. Prysyazhnyuk, R. Andrusyshyn, L. Lutsak, O. Ivanov, and I. Tsap, Forming the structure and the properties of electric arc coatings based on high manganese steel alloyed with titanium and niobium carbides, East.-Eur. J. Enterp. Technol. 1, 38 (2020); https://doi.org/10.15587/1729-4061.2020.194164.
M. Mhadhbi, Titanium Carbide: Synthesis, Properties and Applications, Brilliant Eng. 2, 1 (2020); https://doi.org/10.36937/ben.2021.002.001.
L. Trinh et al., J. Am., Selective laser sintering and spark plasma sintering of (Zr,Nb,Ta,Ti,W)C compositionally complex carbide ceramics, Ceram. Soc. 107, 7175 (2024); https://doi.org/10.1111/jace.20019.
W. Wei, X. Ying, W. Xu, H. Zhiquan, and L. Shengxin, Effect of V content on microstructures and properties of TiC cermet fusion welding interface, China Weld. 33, 40 (2024); https://doi.org/10.12073/j.cw.20231212019.
M. Chen et al., Effect of VC addition on the microstructure and properties of TiC steel-bonded carbides fabricated by two-step sintering, Int. J. Refract. Met. Hard Mater. 108, 105948 (2022); https://doi.org/10.1016/j.ijrmhm.2022.105948.
R. Picha, A. Kroupa, and P. Broz, Phase Diagram of the Ti-V-C System at 1000 and 1200° C, Arch. Metall. Mater. No 2, 139 (2001).
M. Chen, X. Zhang, X. Xiao, and H. Zhao, Effect of VC additions on the microstructure and mechanical properties of TiC-based cermets, Mater. Res. Express 7, 106527 (2020); https://doi.org/10.1088/2053-1591/abc2a1.
Q. Wang, Q. Li, H. Ding, and F. Tian, Elastic properties of solid-solution refractory metal carbides with vacancy from virtual crystal approximation and supercell method, Comput. Condens. Matter 32, e00721 (2022); https://doi.org/10.1016/j.cocom.2022.e00721.
P. Prysyazhnyuk et al., Analysis of the effects of alloying with Si and Cr on the properties of manganese austenite based on AB INITIO modelling, East.-Eur. J. Enterp. Technol. 6, 28 (2020); https://doi.org/10.15587/1729-4061.2020.217281.
J. Kim, First-principles investigation of the elastic properties and phase stability of (Ti1-xNix)C1-y ternary metastable carbides, J. Alloys Compd. 853, 157349 (2021); https://doi.org/10.1016/j.jallcom.2020.157349.
A. van de Walle, M. Asta, and G. Ceder, The alloy theoretic automated toolkit: A user guide, Calphad 26, 539 (2002); https://doi.org/10.1016/s0364-5916(02)80006-2.
J. Hafner and G. Kresse, The Vienna AB-Initio Simulation Program VASP: An Efficient and Versatile Tool for Studying the Structural, Dynamic, and Electronic Properties of Materials, in Properties of Complex Inorganic Solids (Springer US, 1997) pp. 69–82; https://doi.org/10.1007/978-1-4615-5943-6_10.
J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation, J. Phys. Chem. Lett. 11, 8208 (2020); https://doi.org/10.1021/acs.jpclett.0c02405.
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999); https://doi.org/10.1103/physrevb.59.1758.
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.
V. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021); https://doi.org/10.1016/j.cpc.2021.108033.
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65, 349 (1952); https://doi.org/10.1088/0370-1298/65/5/307.
D. M. Teter, Computational alchemy: The search for new superhard materials, MRS Bull. 23, 22 (1998); https://doi.org/10.1557/S0883769400031420.
X.-Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19, 1275 (2011); https://doi.org/10.1016/j.intermet.2011.03.026.
Y. Tian, B. Xu, and Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater. 33, 93 (2012); https://doi.org/10.1016/j.ijrmhm.2012.02.021.
N. Miao, B. Sa, J. Zhou, and Z. Sun, Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials, Comput. Mater. Sci. 50, 1559 (2011); https://doi.org/10.1016/j.commatsci.2010.12.015.
E. Mazhnik and A. R. Oganov, A model of hardness and fracture toughness of solids, J. Appl. Phys. 126, 125109 (2019); https://doi.org/10.1063/1.5113622.
P. Prysyazhnyuk and D. Di Tommaso, The thermodynamic and mechanical properties of Earth-abundant metal ternary boride Mo2(Fe,Mn)B2 solid solutions for impact- and wear-resistant alloys, Mater. Adv. 4, 3822 (2023); https://doi.org/10.1039/D3MA00313B.
G. te Velde and E. J. Baerends, Precise density-functional method for periodic structures, Phys. Rev. B 44, 7888 (1991); https://doi.org/10.1103/PhysRevB.44.7888.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.
X. Zhang, J.D. Comins, A.G. Every and P.R. Stoddart, Surface Brillouin scattering studies on vanadium carbide, Int. J. Refract. Met. Hard Mater. 16, 303 (1998); https://doi.org/10.1016/S0263-4368(98)00046-8.
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45, 823 (1954); https://doi.org/10.1080/14786440808520496.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P.M. Prysyazhnyuk, I. P. Yaremiy, A. H. Kharlov, M. P. Makohin, I. M. Umantsiv, V. V. Savchyn, O. I. Misiuk

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




