Impedance spectroscopy of carbonized and thermal activated porous carbon materials
DOI:
https://doi.org/10.15330/pcss.26.2.251-260Keywords:
porous carbon material, carbonization, thermal activation, electrochemical insertion, impedance spectroscopy, equivalent electric circuit, diffusion coefficientAbstract
Using the impedance spectroscopy method, a comparative analysis of the kinetics of the electrochemical insertion of lithium ions into a porous carbon material obtained by hydrothermal carbonization of plant raw materials at a temperature of 750°C (PCM-C sample) and its subsequent thermal activation at a temperature of 400°C for 2.5 h (PCM-TA sample) was carried out. For electrochemical systems based on these materials, equivalent electrical circuits were selected that satisfactorily model the impedance spectra in the studied frequency range of 10-2 -105 Hz. A physical interpretation was proposed for each element of the circuit. The diffusion coefficient of lithium ions into the structure of electrode materials was calculated.
References
Y. Chen, Y. Liao, Y. Qing, Y. Ding, Y. Wu, L. Li, S. Luo, Y. Wu, Recent advances in plant-derived porous carbon for lithium–sulfur batteries, Journal of Energy Storage, 99(A), 113186 (2024); https://doi.org/10.1016/j.est.2024.113186.
D. Feng, Y. Li, X. Qin, L. Zheng, B. Guo, W. Dai, N. Song, L. Liu, Y. Xu, Z. Tang, T. Gao Biomass derived porous carbon anode materials for lithium-ion batteries with high electrochemical performance, International Journal of Electrochemical Science, 19(3), 100488 (2024); https://doi.org/10.1016/j.ijoes.2024.100488.
K. Zhou, S. Wang, S. Zhang, F. Kang, B. Li Investigating the increased-capacity mechanism of porous carbon materials in lithium-ion batteries, Journal of Materials Chemistry A, 28, 14031 (2020); https://doi.org/10.1039/D0TA04054A.
H. Qutaish, S.A. Han, Y. Rehman, K. Konstantinov, M.-S. Park, J.H. Kim Porous carbon architectures with different dimensionalities for lithium metal storage, Science and Technology of Advanced Materials, 23(1), 169 (2020); https://doi.org/10.1080/14686996.2022.2050297.
J. Ruan, Y. Xie, Z. Ye, Research progress on the application of biomass-based porous carbon materials in lithium battery electrode, Highlights in Science, Engineering and Technology, 40, 219 (2023); https://doi.org/10.54097/hset.v40i.6631.
S. Ruan, X. He, H. Huang, Y. Gan, Y. Xia, J. Zhang, W. Wan, C. Wang, C. Xia, W. Zhang, Innovative approaches of porous carbon materials derived from energy waste and their electrochemical properties, Energy Mater., 5, 500066 (2025); http://dx.doi.org/10.20517/energymater.2024.217.
K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. Van der Ven, V. Srinivasan, R. Kostecki, G. Ceder Lithium diffusion in graphitic carbon, J. Phys. Chem. Lett., 1, 1176 (2010); https://doi.org/10.1021/jz100188d.
Y.-K. Huang, J. Pettersson, L. Nyholm, Diffusion-Controlled Lithium Trapping in Graphite Composite Electrodes for Lithium-Ion Batteries, Adv. Energy Sustainability Res., 3, 2200042 (2022); https://doi.org/10.1002/aesr.202200042.
T. Uchida, Y. Morikawa, H. Ikuta, M. Wakihara, Chemical diffusion coefficient of lithium in carbon fiber, J. Electrochem. Soc., 143(8), 2606 (1996); https://doi.org/10.1149/1.1837055.
S.-J. Kinkelin, F. Röder, K. Vogel, M. Steimecke, M. Bron, A fundamental study on cyclic voltammetry at porous carbon thin-film electrodes, Electrochim. Acta, 488, 144183 (2024); https://doi.org/10.1016/j.electacta.2024.144183.
J.H. Park, H. Yoon, Y. Cho, C.-Y. Yoo, Investigation of lithium ion diffusion of graphite anode by the galvanostatic intermittent titration technigue, Materials, 14(16), 4683 (2021); https://doi.org/10.3390/ma14164683.
J. Inamoto, S. Komiyama, S. Uchida, A. Inoo, Y. Matsuo, Insight into the origin of the rapid charging ability of graphene-like graphite as a lithium-ion battery anode material using electrochemical impedance spectroscopy, J. Phys. Chem. C, 126(38), 16100 (2022); https://doi.org/10.1021/acs.jpcc.2c04780.
V.I. Mandzyuk, N.І. Nagirna, R.P. Lisovskiy, B.I. Rachiy, Y.T. Solovko, R.I. Merena, The effect of thermal treatment of porous carbon on specific energy characteristics of lithium power sources on its basis, Visnyk of Lviv Polytechnic National University, Electronics, 708, 84 (2011).
V.I. Mandzyuk, N.I. Nagirna, R.P. Lisovskyy, Morphology and electrochemical properties of thermal modified nanoporous carbon as electrode of lithium power sources, Journal of Nano- and Electronic Physics, 6(1), 01017 (2014).
E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications (John Wiley & Sons Inc., New Jersey, 2018).
P. Wang, D. Yan, C. Wang, H. Ding, H. Dong, J. Wang, S. Wu, X. Cui, C. Li, D. Zhao, S. Li, Study of the formation and evolution of solid electrolyte interface via in-situ electrochemical impedance spectroscopy, Applied Surface Science, 596, 153572 (2022); https://doi.org/10.1016/j.apsusc.2022.153572.
P.B.Balbuena, Y. Wang, Lithium-ion batteries: solid-electrolyte interphase (London, 2004).
V.I. Mandzyuk, R.P. Lisovskiy, Fractal structure of nanoporous carbon obtained by hydrothermal carbonization of plant raw materials, Journal of Nano- and Electronic Physics, 14(5), 05027 (2022); https://doi.org/10.21272/jnep.14(5).05027.
V.I. Mandzyuk, R.P. Lisovskiy, Yu.O. Kulyk, B.I. Rachiy, R.V. Solomovskyi, The effect of thermal modification of turbostratic carbon on its fractal structure, Physics and Chemistry of Solid State, 25(1), 51 (2024); https://doi.org/10.15330/pcss.25.1.51-56.
C.A. Leon y Leon, L.R. Radovic, Chemistry and Physics of Carbon (New York, 1994).
H. Guo, X. Li, X. Zhang, H. Wang, Z. Wang, W. Peng, Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and disordered carbon, New Carbon Materials, 22(1), 7 (2007); https://doi.org/10.1016/s1872-5805(07)60006-7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 V.I. Mandzyuk, N.I. Nagirna, R.V. Solomovskyi, N.A. Ostapyshyn

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




