High-purity nano hydroxyapatite (CaP) synthesized at low temperature (<100°C): a promising candidate for large-scale production of nano fertilizers

Authors

  • Thi My Anh Nguyen Research Laboratories of Sai Gon Hi-Tech Park, Lot I3, N2 Street, Tan Phu Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam https://orcid.org/0009-0004-6698-0213
  • Thanh Sinh Do Research Laboratories of Sai Gon Hi-Tech Park, Lot I3, N2 Street, Tan Phu Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
  • Thai Thinh Le Research Laboratories of Sai Gon Hi-Tech Park, Lot I3, N2 Street, Tan Phu Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
  • Thi Kim Xuan Nguyen Research Laboratories of Sai Gon Hi-Tech Park, Lot I3, N2 Street, Tan Phu Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
  • Cong Danh Nguyen Research Laboratories of Sai Gon Hi-Tech Park, Lot I3, N2 Street, Tan Phu Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam https://orcid.org/0009-0000-2106-8918
  • Nhi Kieu Vo Research Laboratories of Sai Gon Hi-Tech Park, Lot I3, N2 Street, Tan Phu Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
  • Ngoc Tuan Anh Mai Research Laboratories of Sai Gon Hi-Tech Park, Lot I3, N2 Street, Tan Phu Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam https://orcid.org/0009-0004-5860-6969

DOI:

https://doi.org/10.15330/pcss.26.3.532-540

Keywords:

Nano-hydroxyapatite (CaP), Nanofertilizer, Low-temperature synthesis, Triethanolamine (TEA), Sustainable agriculture, Controlled nutrient release

Abstract

Calcium phosphate (CaP) nanoliquid fertilizers have shown great potential in improving nutrient uptake efficiency by providing a controlled and sustained release of calcium (Ca) and phosphate (P) ions. In this study, we successfully synthesized highly pure calcium phosphate nanoparticles with a uniform size of a few tens of nanometers using a simple and cost-effective method. By incorporating triethanolamine (TEA) as a complexing and stabilizing agent, we significantly reduced the synthesis temperature, leading to lower energy consumption and production costs while ensuring excellent nanoparticle quality. The resulting nano-hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂) exhibited a high surface area, promoting gradual nutrient release and improved bioavailability for crops. This straightforward approach offers a scalable and economically viable route for producing advanced nanofertilizers tailored for sustainable agriculture.

References

Liao, Y., Xu, D., Cao, Y. et al. Advancing sustainable agriculture: Enhancing crop nutrition with next-generation nanotech-based fertilizers. Nano Res. 16, 13205 (2023); https://doi.org/10.1007/s12274-023-6284-8.

Kamel A. Abd-Elsalam, Mousa A. Alghuthaymi, Nanofertilizers for Sustainable Agroecosystems, Recent Advances and Future Trends, Nanotechnology in the Life Sciences (NALIS), (2024); https://www.amazon.com/dp/B0DFC39CHQ.

N. Kottegoda, I. Munaweera, N. Madusanka, V. Karunaratne, A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr. Sci., 101, 73 (2011); https://www.researchgate.net/publication/269709591.

A.A.A. Elsayed, A. El-Gohary, Z.K. Taha, H.M. Farag, M.S. Hussein, K. AbouAitah, Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Sci. Hortic., 295, 110851 (2022); https://doi.org/10.1016/j.scienta.2021.110851.

A.Y. Pataquiva Mateus, M.P. Ferraz and F.J. Monteiro, Microspheres based on hydroxyapatite nanoparticles aggregates for bone regeneration, Key Engineering Materials, 330-332, 243 (2007); https://www.scientific.net/KEM.330-332.243.

M. Luca, F. Antonio, A. Alessio, I. Michele, M. Alessandro, P. Elisa, D. Lorenzo, B. Enrico, Influence of Hydroxyapatite Nanoparticles on Germination and Plant Metabolism of Tomato (Solanum lycopersicum L.), Preliminary Evidence, Agronomy, 9, 161 (2019); https://doi.org/10.3390/agronomy9040161.

Mc Dowell H., Gregory T.M., Brown W.E., Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 °C, J. Res. Nat. Bur. Stand. 81, 273 (1977); https://nvlpubs.nist.gov/nistpubs/jres/081/2/V81.N02.A05.pdf.

L.F. Guo, W.H. Wang, W.G. Zjang, C.T. Wang, Effects of synthesis factors on the morphology, crystallinity and crystal size of hydroxyapatite precipitation, J. Harbin Inst. Technol. 12, 656 (2005); https://www.researchgate.net/publication/289141451.

Omar Mekmene1, Sophie Quillard, Thierry Rouillon, Jean-Michel Bouler, Michel Piot, Frédéric Gaucheron, Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions, Dairy Sci. Technol. 89, 301 (2009); https://doi.org/10.1051/dst/2009019.

H.E.L. Madsen, F. Christensson, Precipitation of calcium phosphate at 40 °C from neutral solution, J. Cryst. Growth, 114, 613 (1991); https://doi.org/10.1016/0022-0248(91)90407-V.

H.E.L. Madsen, G. Thorvardarson, Precipitation of calcium phosphate from moderately acid solution, J. Cryst. Growth, 66, 369 (1984); https://doi.org/10.1016/0022-0248(84)90220-3.

G.H. Nancollas, Z.J. Henneman , Calcium oxalate: calcium phosphate transformations. Urological Research. 38, 277 (2010); https://link.springer.com/article/10.1007/s00240-010-0292-3.

Sergey V. Dorozhkina and Paul R. Young, Calcium phosphates in geological, biological, and industrial systems, In book: Water-Formed Deposits, 141 (2022); https://doi.org/10.1016/B978-0-12-822896-8.00011-X.

Amit Kumar Nayak, Hydroxyapatite synthesis methodologies: An overview, International Journal of ChemTech Research, 2(2), 903 (2010); https://sphinxsai.com/s_v2_n2/CT_V.2No.2/ChemTech_Vol_2No.2_pdf/CT%3D24%20%28903-907%29.pdf

E. Bouyer, F. Gitzhofer, MI. Boulos, Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci: Mater Med. 11, 523 (2000); https://doi.org/10.1023/A:1008918110156.

MP Ferraz, FJ Monteiro, CM. Manuel, Hydroxyapatite nanoparticles: A review of preparation methodologies. J Appl Biomater Biomech. 2, 74 (2004); https://journals.sagepub.com/doi/10.1177/228080000400200202.

G. Poinern, et al. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. Int. J. Nanomed. 6, 2083 (2011); https://doi.org/10.2147/IJN.S24790.

M.E. Fleet. Carbonate apatite type A synthesized at high pressure: New space group (P3̄) and orientation of channel carbonate ion. Journal of Solid State Chemistry, 174(2), 412 (2003); https://doi.org/10.1016/S0022-4596(03)00281-0.

J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam, 1994. https://shop.elsevier.com/books/structure-and-chemistry-of-the-apatites-and-other-calcium-orthophosphates/elliott/978-0-444-81582-8.

C. Rey, C. Combes, C. Drouet, and M.J. Glimcher, Bone mineral: update on chemical composition and structure. Osteoporosis International, 20(6), 1013 (2009); https://doi.org/10.1007/s00198-009-0860-y.

Downloads

Published

2025-09-12

How to Cite

Nguyen, T. M. A., Do, T. S., Le, T. T., Nguyen, T. K. X., Nguyen, C. D., Vo, N. K., & Mai, N. T. A. (2025). High-purity nano hydroxyapatite (CaP) synthesized at low temperature (<100°C): a promising candidate for large-scale production of nano fertilizers. Physics and Chemistry of Solid State, 26(3), 532–540. https://doi.org/10.15330/pcss.26.3.532-540

Issue

Section

Scientific articles (Technology)