High-purity nano hydroxyapatite (CaP) synthesized at low temperature (<100°C): a promising candidate for large-scale production of nano fertilizers
DOI:
https://doi.org/10.15330/pcss.26.3.532-540Keywords:
Nano-hydroxyapatite (CaP), Nanofertilizer, Low-temperature synthesis, Triethanolamine (TEA), Sustainable agriculture, Controlled nutrient releaseAbstract
Calcium phosphate (CaP) nanoliquid fertilizers have shown great potential in improving nutrient uptake efficiency by providing a controlled and sustained release of calcium (Ca) and phosphate (P) ions. In this study, we successfully synthesized highly pure calcium phosphate nanoparticles with a uniform size of a few tens of nanometers using a simple and cost-effective method. By incorporating triethanolamine (TEA) as a complexing and stabilizing agent, we significantly reduced the synthesis temperature, leading to lower energy consumption and production costs while ensuring excellent nanoparticle quality. The resulting nano-hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂) exhibited a high surface area, promoting gradual nutrient release and improved bioavailability for crops. This straightforward approach offers a scalable and economically viable route for producing advanced nanofertilizers tailored for sustainable agriculture.
References
Liao, Y., Xu, D., Cao, Y. et al. Advancing sustainable agriculture: Enhancing crop nutrition with next-generation nanotech-based fertilizers. Nano Res. 16, 13205 (2023); https://doi.org/10.1007/s12274-023-6284-8.
Kamel A. Abd-Elsalam, Mousa A. Alghuthaymi, Nanofertilizers for Sustainable Agroecosystems, Recent Advances and Future Trends, Nanotechnology in the Life Sciences (NALIS), (2024); https://www.amazon.com/dp/B0DFC39CHQ.
N. Kottegoda, I. Munaweera, N. Madusanka, V. Karunaratne, A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr. Sci., 101, 73 (2011); https://www.researchgate.net/publication/269709591.
A.A.A. Elsayed, A. El-Gohary, Z.K. Taha, H.M. Farag, M.S. Hussein, K. AbouAitah, Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Sci. Hortic., 295, 110851 (2022); https://doi.org/10.1016/j.scienta.2021.110851.
A.Y. Pataquiva Mateus, M.P. Ferraz and F.J. Monteiro, Microspheres based on hydroxyapatite nanoparticles aggregates for bone regeneration, Key Engineering Materials, 330-332, 243 (2007); https://www.scientific.net/KEM.330-332.243.
M. Luca, F. Antonio, A. Alessio, I. Michele, M. Alessandro, P. Elisa, D. Lorenzo, B. Enrico, Influence of Hydroxyapatite Nanoparticles on Germination and Plant Metabolism of Tomato (Solanum lycopersicum L.), Preliminary Evidence, Agronomy, 9, 161 (2019); https://doi.org/10.3390/agronomy9040161.
Mc Dowell H., Gregory T.M., Brown W.E., Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 °C, J. Res. Nat. Bur. Stand. 81, 273 (1977); https://nvlpubs.nist.gov/nistpubs/jres/081/2/V81.N02.A05.pdf.
L.F. Guo, W.H. Wang, W.G. Zjang, C.T. Wang, Effects of synthesis factors on the morphology, crystallinity and crystal size of hydroxyapatite precipitation, J. Harbin Inst. Technol. 12, 656 (2005); https://www.researchgate.net/publication/289141451.
Omar Mekmene1, Sophie Quillard, Thierry Rouillon, Jean-Michel Bouler, Michel Piot, Frédéric Gaucheron, Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions, Dairy Sci. Technol. 89, 301 (2009); https://doi.org/10.1051/dst/2009019.
H.E.L. Madsen, F. Christensson, Precipitation of calcium phosphate at 40 °C from neutral solution, J. Cryst. Growth, 114, 613 (1991); https://doi.org/10.1016/0022-0248(91)90407-V.
H.E.L. Madsen, G. Thorvardarson, Precipitation of calcium phosphate from moderately acid solution, J. Cryst. Growth, 66, 369 (1984); https://doi.org/10.1016/0022-0248(84)90220-3.
G.H. Nancollas, Z.J. Henneman , Calcium oxalate: calcium phosphate transformations. Urological Research. 38, 277 (2010); https://link.springer.com/article/10.1007/s00240-010-0292-3.
Sergey V. Dorozhkina and Paul R. Young, Calcium phosphates in geological, biological, and industrial systems, In book: Water-Formed Deposits, 141 (2022); https://doi.org/10.1016/B978-0-12-822896-8.00011-X.
Amit Kumar Nayak, Hydroxyapatite synthesis methodologies: An overview, International Journal of ChemTech Research, 2(2), 903 (2010); https://sphinxsai.com/s_v2_n2/CT_V.2No.2/ChemTech_Vol_2No.2_pdf/CT%3D24%20%28903-907%29.pdf
E. Bouyer, F. Gitzhofer, MI. Boulos, Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci: Mater Med. 11, 523 (2000); https://doi.org/10.1023/A:1008918110156.
MP Ferraz, FJ Monteiro, CM. Manuel, Hydroxyapatite nanoparticles: A review of preparation methodologies. J Appl Biomater Biomech. 2, 74 (2004); https://journals.sagepub.com/doi/10.1177/228080000400200202.
G. Poinern, et al. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. Int. J. Nanomed. 6, 2083 (2011); https://doi.org/10.2147/IJN.S24790.
M.E. Fleet. Carbonate apatite type A synthesized at high pressure: New space group (P3̄) and orientation of channel carbonate ion. Journal of Solid State Chemistry, 174(2), 412 (2003); https://doi.org/10.1016/S0022-4596(03)00281-0.
J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam, 1994. https://shop.elsevier.com/books/structure-and-chemistry-of-the-apatites-and-other-calcium-orthophosphates/elliott/978-0-444-81582-8.
C. Rey, C. Combes, C. Drouet, and M.J. Glimcher, Bone mineral: update on chemical composition and structure. Osteoporosis International, 20(6), 1013 (2009); https://doi.org/10.1007/s00198-009-0860-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Thi My Anh Nguyen, Thanh Sinh Do, Thai Thinh Le, Thi Kim Xuan Nguyen, Cong Danh Nguyen, Nhi Kieu Vo, Ngoc Tuan Anh Mai

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




