Synthesis, Electrical and Magnetic Properties of Composites Copper Iodide/Magnetite-Polychlorotrifluoroethylene
DOI:
https://doi.org/10.15330/pcss.18.2.215-221Keywords:
magnetite, copper iodide, nanocomposites, specific magnetization, interfacial interactionAbstract
The structural, magnetic and electrophysical properties of composites based on nanosized magnetite chemically modified of copper iodide and polychlortrifluoroethylene have been studied at temperatures 298 – 450 K and CuI concentrations of from 0 to 0,58 volume. It has been found the optimal volume content of copper iodide (~ 0.4) in the composites CuI/Fe3O4, when the interfacial interaction shows most intensively and maximum values electrical parameters take place. The value of the coercive force of nanocomposites CuI/Fe3O4 increases with increasing content copper iodide. It was shown that polymer composites containing CuI/Fe3O4, have higher values of real and imaginary components of complex permittivity and conductivity compared with a system that contains only copper iodide.
References
[2] T.K. Mahto, A.R. Chowdhuri, S.K. Sahu, J Appl. Polym. Sci., 131 40840 (2014).
[3] Hitoshi Sakamoto , Sho Igarashi, Kazuma Niume, Masayuki Nagai, Organic Electronics, 12 1247 (2011).
[4] Peichao Lian, Xuefeng Zhu, Shuzhao Liang, Zhong Li, Weishen Yang, Haihui Wang, Electrochimica Acta, 56 4532 (2011).
[5] A.S. Antonova, N.T. Kropacheva, Ju.Ja. Kolida, V.I. Kornev, Sorbcionnye i hromatograficheskie processy, 15(6), 784 (2015).
[6] V.F. Chekhun, Nanosystemy, nanomaterialy, nanotekhnolohiyi 9(1), 261 (2011).
[7] M. Colombo, S. Carregal-Romero, M.F. Casula et al, Chem. Soc. Rev, 41 4306 (2012).
[8] M. Baghayeri, Zare E. Nazarzadeh, Lakouraj M. Mansour, Biosens. Bioelectron., 55 259 (2014).
[9] Salman Shojaei, Zarrin Ghasemi, Aziz Shahrisa, Appl. Organometal Chem. (2017) DOI:10.1002/aoc.3788.
[10] L.V. Lucev, Nanotehnika 10 37 (2008).
[11] J.W. Liu, J.J. Xu, R.C. Che, H.J. Chen, M.M. Liu, Z.W. Liu, Chem. Eur. J. 19 6746 (2013).
[12] X. L. Zheng, J. Feng, Y. Zong, H. Miao, X. Y. Hu, J.T. Bai et all, J. Mater. Chem. C 3 4452 (2015).
[13] T.T. Tung, J.F. Feller, T. Kim et al, J Polym. Sci. Part A: Polym. Chem. 50 927 (2012).
[14] J. W. Liu, J. Cheng, R. C. Che, J. J. Xu, M. M. Liu, Z.W. Liu, J. Phys. Chem. C 117 489 (2013).
[15] J. Deng, C. He, Y. Peng et al, Synth. Met. 139 295 (2003).
[16] M. Park, J. Cheng, J. Choi et al, Colloids Surf. B Biointerfaces, 102 238 (2013).
[17] M. Khairy, Synth. Met. 189 34 (2014).
[18] S. He, G.S. Wang, C. Lu, J. Liu, B. Wen, M.S. Cao, et al., J. Mater. Chem. A 1 4685(2013).
[19] J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. C 3 4670 (2015).
[20] L. Kong, X.W. Yin, M.K. Han, L.T. Zhang, L.F. Cheng, Ceram. Int. 41 4906 (2015).
[21] G.S. Wang, S. He, X. Luo, M.M. Lu, L. Guo, M.S. Cao, et al., RSC Advanced, 3 18009 (2013).
[22] Y.C. Qing, Q.L. Wen, F. Luo, W.C. Zhou, D.M. Zhu, J. Mater. Chem. C, 4 371 (2016).
[23] K. Singh, A. Ohlan, V.H. Pham, S. Varshney, J. Jang, J.S. Chung, et al., Nanoscale, 5 2411 (2013).
[24] S. Qiu, H.L. Lyu, J.R. Liu, Y.Z. Liu, N.N. Wu, W. Liu, ACS Applied Materials Interfaces, 8 20258 (2016).
[25] B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, et al., Adv. Mater. 26 3484 (2014).
[26] V.V. Sviridov, Himicheskoe osazhdenie metallov iz vodnyh rastvorov (Universitetskoe, Minsk, 1987).
[27] Rukovodstvo po neorganicheskomu sintezu (Pod red. G. Braujer) (Mir, Moskva, 1985).
[28] A. Gin'e, Rentgenografija kristallov (Gos. Izd-vo fiz.mat. literatury, Moskva, 1995).
[29] V.M. Bogatyrev, N.V. Borisenko, I.V.Dubrovin, i dr. (Sb. trudov pod red. A.P. Shpaka i P.P. Gorbika) “Fiziko–himija nanomaterialov i supramolekuljarnyh struktur” (Naukova dumka, Kiev, 2007).
[30] L.M. Hanyuk, V.D. Ihnatkov, S.M. Makhno, P.M Soroka, Ukrayins'kyy fizychnyy zhurnal 40(6), 627 (1995).
[31] L.P. Pavlov, Metody opredelenija parametrov poluprovodnikovyh materialov (Vysshaja shkola, Moskva, 1987).
[32] S.P. Gubin, Ju.A. Koksharov, G.B. Homutov, G.Ju. Jurkov, Uspehi himii 74(6), 539 (2005).