Influence of annealing temperature on the Charpy fracture characteristics of selective laser melted 316L steel at ambient and cryogenic temperatures

Authors

  • Bohdan Efremenko Pryazovskyi State Technical University, Dnipro, Ukraine
  • Yuliia Chabak Institute of Materials Research of Slovak Academy of Sciences, Kosice, Slovakia; Pryazovskyi State Technical University, Dnipro, Ukraine
  • Elena Tsvetkova Pryazovskyi State Technical University, Dnipro, Ukraine
  • Inna Oleinyk Pryazovskyi State Technical University, Dnipro, Ukraine
  • Vasily Efremenko Institute of Materials Research of Slovak Academy of Sciences, Kosice, Slovakia; Priazovskyi State Technical University, Dnipro, Ukraine
  • Antonina Dzherenova Pryazovskyi State Technical University, Dnipro, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.4.844-851

Keywords:

316L, Selective Laser Melting, annealing, impact toughness, absorbed energy, microstructure

Abstract

The effect of high-temperature annealing on the Charpy fracture properties of 316L stainless steel manufactured via Selective Laser Melting (SLM) was studied at ambient (25 oC) and cryogenic (–196 oC, LNT) temperatures. Charpy V-notched specimens (5×10×55 mm) were built along the Z-axis and annealed (5 h) at 900oC, 1050oC, or 1200oC, followed by water quenching. Impact tests were performed with the force-displacement curves recording. Microstructure was analysed using OM, SEM, EBSD, and EDX. The SLM-316L exhibited impact toughness (KCV) of one-third that of rolled 316L due to SLM’s cellular structure and specific micro-defects. Annealing at 900 oC removed the cellular structure, slightly improving impact toughness, while annealing at 1200 oC reduced it by a factor of 1.5 due to (MnCrSiAl)O3 precipitation. At –196 oC, absorbed energy decreased compared to 25 oC by a factor of 1.7-2.2. At 25oC, crack propagation energy (KVprop) exceeded crack initiation energy (KVini) across all conditions. At –196 oC, the KVprop fraction in annealed samples decreased because of deformation-induced martensitic transformation. The cellular structure of as-printed steel promoted a higher KVprop fraction at –196 oC. Ratio KCVLNT/KCVRT (0.46-0.59) indicates no ductile-brittle transition threshold, supporting the suitability of SLM-316L steel for cryogenic applications.

References

N. M. Kibambe, B. A. Obadele, B. J. Babalola, U. S. Anamu, P. A. Olubambi, Corrosion characteristics of heat-treated biomedical grade 316L stainless steel in simulated body fluids. Results in Materials, 26, 100676 (2025); https://doi.org/10.1016/j.rinma.2025.100676.

L. Gao, S. A. Mantri, X. Zhang, Quantification of solution annealing effects on microstructure and property in a laser powder bed fusion 316H stainless steel, Materials & Design, 251, 113692 (2025); https://doi.org/10.1016/j.matdes.2025.113692.

G. Bagliuk, M. Marych, Y. Shishkina, A. Mamonova, O. Gripachevsky, S. Kyryliuk,. Features of phase and structure formation in obtaining high-entropy alloy of Fe-Ti-Cr-Mn-Si-C system from a powder mixture of ferroalloys. Physics and Chemistry of Solid State, 23(3), 620 (2022); https://doi.org/10.15330/pcss.23.3.620-625.

V. Kulyk, I. Izonin, V. Vavrukh, R. Tkachenko, Z. Duriagina, B. Vasyliv, M. Kováčová, Prediction of hardness, flexural strength, and fracture tiyghness of ZrO2 based ceramics using ensemble learning algorithms, Acta Metallurgica Slovaca, 29 (2), 93 (2023); https://doi.org/10.36547/ams.29.2.1819.

N. Haghdadi, M. Laleh, M. Moyle, S. Primig, Additive manufacturing of steels: A review of achievements and challenges, Journal of Materials Science, 56, 64 (2021); https://doi.org/10.1007/s10853-020-05109-0.

V. G. Efremenko, A. G. Lekatou, Yu. G. Chabak, B. V. Efremenko, I. Petryshynets, V. I. Zurnadzhy, S. Emmanouilidou, M. Vojtko, Micromechanical, corrosion and wet sliding wear behaviours of Co-28Cr-6Mo alloy: Wrought vs. SLM, Materials Today Communications, 35, 105936 (2023); https://doi.org/10.1016/j.mtcomm.2023.105936.

M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, Wire-feeding based additive manufacturing of the Ti–6Al–4V alloy. Part I. Microstructure, Progress in Physics of Metals, 24 (1), 5 (2023); https://doi.org/10.15407/ufm.24.01.005.

J. Yang, B. Li, Y. Zheng, G. Chen, X. Chen, Low cycle fatigue behavior of additive manufactured 316LN stainless steel at 550 ◦C: Effect of solution heat treatment. Int. J. Fatigue, 179, 108066 (2024); https://doi.org/10.1016/j.ijfatigue.2023.108066.

B.V. Efremenko, V.I. Zurnadzhy, Yu. G. Chabak, V. G. Efremenko, K. V. Kudinova, V. A. Mazur, A comparison study on the effect of counter ball material on sliding wear response of SLM-printed biomedical 316L steel, Materials Today: Proceedings, 66, 2587 (2022); https://doi.org/10.1016/j.matpr.2022.07.112.

O. O. Salman, C. Gammer, A. K. Chaubey, J. Eckert, S. Scudino, Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Mater. Sci. Eng. A, 748, 205 (2019); https://doi.org/10.1016/j.msea.2019.01.110.

E. Ura-Binczyk, A. Dobkowska, P. Bazarnik, J. Ciftci, A. Krawczynska, W. Chrominski, T. Wejrzanowski, R. Molak, R. Sitek, T. Płocinski, J. Jaroszewicz, J. Mizera, Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion. Mater. Sci. Eng. A, 860, 144263 (2022); https://doi.org/10.1016/j.msea.2022.144263.

D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, Mechanical properties and corrosion behaviour of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol., 35, 1499 (2019);

B. Efremenko, Y. Chabak, I. Petryshynets, T. Zhao, V. Efremenko, K. Wu, T. Xia, M. Džupon, S. Arshad, Evaluation of the Suitability of High-Temperature Post-Processing Annealing for Property Enhancement in SLM 316L Steel: A Comprehensive Mechanical and Corrosion Assessment. Metals, 15, 684 (2025); https://doi.org/10.3390/met15060684.

W. Liu, C. Liu, Y. Wang, H. Zhang, H. Ni, Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion. J. Mater. Res. Technol., 32, 3896 (2024); https://doi.org/10.1016/j.jmrt.2024.08.194.

N. Abu-warda, J. Bedmar, S. García-Rodriguez, B. Torres, M.V. Utrilla, J. Rams, Effect of post-processing heat treatments on the high-temperature oxidation of additively manufactured 316L stainless steel. J. Mater. Res. Technol., 29, 3465 (2024); https://doi.org/10.1016/j.jmrt.2024.01.270.

J. Bedmar, S. García-Rodríguez, M. Roldán, B. Torres J. Rams, Effects of the heat treatment on the microstructure and corrosion behavior of 316L stainless steel manufactured by Laser Powder Bed Fusion. Corros. Sci. 209, 110777 (2022); https://doi.org/10.1016/j.corsci.2022.110777.

X. Wang, O. Sanchez-Mata, S.E. Atabay, J.A. Muñiz-Lerma, M.A. Shandiz, M. Brochu, Crystallographic orientation dependence of Charpy impact behaviours in stainless steel 316L fabricated by laser powder bed fusion, Additive Manufacturing, 46, 102104 (2021); https://doi.org/10.1016/j.addma.2021.102104.

S. Li, P.J. Withers, S. Kabra, K. Yan, The behaviour and deformation mechanisms for 316L stainless steel deformed at cryogenic temperatures, Mater. Sci. Eng., A, Volume 880, 145279 (2023); https://doi.org/10.1016/j.msea.2023.145279.

E. de Sonis, S. Dépinoy, P.-F. Giroux, H. Maskrot, P. Wident, F. Villaret, A.-F. Gourgues-Lorenzon, Impact toughness at room and cryogenic temperatures of 316L stainless steel processed by wire arc additive manufacturing, Mater. Sci. Eng., A, 933, 148276 (2025); https://doi.org/10.1016/j.msea.2025.148276.

L. T. H. Nguyen, J. -S. Hwang, M. -S. Kim, J. -H. Kim, S. -K. Kim, J. -M. Lee, Charpy Impact Properties of Hydrogen-Exposed 316L Stainless Steel at Ambient and Cryogenic Temperatures. Metals, 9, 625 (2019); https://doi.org/10.3390/met9060625.

X. Lou, P.L. Andresen, R.B. Rebak, Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior, Journal of Nuclear Materials, 499, 182 (2018); https://doi.org/10.1016/j.jnucmat.2017.11.036.

C.A. Sumanariu, C.G. Amza, F.Baciu, M.I. Vasile, A.I. Nicoara, Comparative Analysis of Mechanical Properties: Conventional vs. Additive Manufacturing for Stainless Steel 316L. Materials, 17, 4808 (2024); https://doi.org/10.3390/ma17194808.

J. Mao, Q. Xu, J. Yang, C. Cao, D. Wang, F. Zhong, M. Chen, Nonlinear Impact Damage Evolution of Charpy Type and Analysis of Its Key Influencing Factors. Chinese Journal of Mechanical Engineering, 37, 3 (2024); https://doi.org/10.1186/s10033-023-00986-3.

Y. Takashi, M. Nishioka, A. Kato, S. Hikasa, H. Iwabuki, K. Nagata, A. Asano, Atsushi. Nano Structure of Polyketon/Polyamide Polymer Alloy, Kobunshi Ronbunshu, 66(12), 577 (2009). https://doi.org/10.1295/koron.66.577.

D. Riabov, A. Leicht, J. Ahlström, E. Hryha, Investigation of the strengthening mechanism in 316L stainless steel produced with laser powder bed fusion. Mater. Sci. Eng. A, 822, 141699 (2021); https://doi.org/10.1016/j.msea.2021.141699.

О. V. Sukhova, V. А. Polonskyy, К. V. Ustinоvа, Influence of Si and B on structure and corrosion properties of quasi-crystalline Al–Cu–Fe alloys in solutions of salts, Metallofizika i Noveishie Tekhnologii, 40(11), 1475 (2018); https://doi.org/10.15407/mfint.40.11.1475.

T. Loskutova, M. Scheffler, I. Pavlenko, K. Zidek, I. Pohrebova, N. Kharchenko, I. Smokovych, O. Dudka, V. Palyukh, I. Ivanov, Y. Kononenko, Corrosion Resistance of Coatings Based on Chromium and Aluminum of Titanium Alloy Ti-6Al-4V, Materials, 17(15), 3880 (2024); https://doi.org/10.3390/ma17153880.

V.G. Efremenko, K. Shimizu, A. P. Cheiliakh, T. V. Kozarevs’ka, Yu. G. Chabak, H. Hara, K. Kusumoto, Abrasive wear resistance of spheroidal vanadium carbide cast irons. Journal of Friction and Wear, 34(6), 466 (2013); https://doi.org/10.3103/S1068366613060068.

F. Yan, W. Xiong, E. Faierson, G.B. Olson, Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion, Scr. Mater., 155, 104 (2018); https://doi.org/10.1016/j.scriptamat.2018.06.011.

E. de Sonis, S. Dépinoy, P.-F. Giroux, H. Maskrot, P. Wident, F. Villaret, A.-F. Gourgues-Lorenzon, Microstructure – Toughness relationships in 316L stainless steel produced by laser powder bed fusion, Mater. Sci. Eng., A, 877, 145179 (2023); https://doi.org/10.1016/j.msea.2023.145179.

M. J. Paul, Q. Liu, X. Li, J. J. Kruzic, U. Ramamurty, B. Gludovatz, Impact of micro and mesostructure on the fatigue crack growth in laser powder bed fusion fabricated AlSi10Mg, Acta Materialia, 293, 121070 (2025); https://doi.org/10.1016/j.actamat.2025.121070.

Published

2025-12-21

How to Cite

Efremenko, B., Chabak, Y., Tsvetkova, E., Oleinyk, I., Efremenko, V., & Dzherenova, A. (2025). Influence of annealing temperature on the Charpy fracture characteristics of selective laser melted 316L steel at ambient and cryogenic temperatures. Physics and Chemistry of Solid State, 26(4), 844–851. https://doi.org/10.15330/pcss.26.4.844-851

Issue

Section

Scientific articles (Technology)