Photopolymerization and photodegradation of polymers after long-term UV light exposure
DOI:
https://doi.org/10.15330/pcss.26.4.718-732Keywords:
photopolymerization, photodegradation, UV light, irradiation, polymers, free volume, properties, photostructural changes, computer modeling, recurrence analysisAbstract
Over the past two decades, research into photostimulated processes in polymeric materials has gained new momentum, driven both by the growing demand for functional polymers with controllable properties and the need to understand their long-term stability under operational conditions. Current approaches combine the development of new materials, such as photopolymerization systems for 3D printing and biosensing, with a deep fundamental study of the mechanisms of photoinduced changes, including the role of free volume and the dynamics of molecular motions. UV light irradiation is known to affect materials, and possibly change their properties in certain conditions due to the existence of ‘subthreshold radiation effects’. Polymerization reactions may also need light exposure to happen, this is photopolymerization, and UV light exposure is a very good way to start these reactions. However, UV light can degrade the polymer if it is exposed to it for a prolonged period of time. In this case, the newly formed polymer will undergo changes in its network structure, which can change its properties. A combination of positron annihilation lifetime spectroscopy (PALS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and electron paramagnetic resonance (EPR) spectroscopy in complementary with computer modeling using recurrence analysis, was used to obtain information on the network properties of polymer matrix based on acrylated epoxidized soybean oil (AESO) and vanillin dimethacrylate (VDM) with and without a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) (DMPA) according to the proposed light on/off protocol in view of long-term UV light exposure.
References
A.E. Kiv, V.N. Soloviev, A.O. Bielinskyi, M.A. Slusarenko, T.S. Kavetskyy, O. Šauša, H. Švajdlenková, I.I. Donchev, N.K. Hoivanovych, L.I. Pankiv, O.V. Nykolaishyn, O.R. Mushynska, O.V. Zubrytska, A.V. Tuzhykov, M. Kushniyazova, Multifractal signatures of light-driven self-organization in acrylated epoxidized soybean oil polymers, Semiconductor Physics, Quantum Electronics & Optoelectronics, 27(3), 366 (2024); https://doi.org/10.15407/spqeo27.03.366.
T. Kavetskyy, O. Smutok, M. Goździuk-Gontarz, B. Zgardzińska, Y. Kukhazh, K. Zubrytska, N. Hoivanovych, O. Šauša, O. Demkiv, N. Stasyuk, M. Gonchar, J. Ostrauskaite, A. Kiv, E. Katz, Impact of chemical composition of soybean oil and vanillin-based photocross-linked polymers on parameters of electrochemical biosensors, Microchemical Journal, 201, 110618 (2024); https://doi.org/10.1016/j.microc.2024.110618.
M. Goździuk, B. Zgardzińska, T. Kavetskyy, Research on the sorption properties of biopolymer matrix based on soybean oil for the construction of biosensors to detect xenobiotics, Acta Physica Polonica B Proceedings Supplement, 15, 4-A5 (2022); https://doi.org/10.5506/APhysPolBSupp.15.4-A5.
M. Goździuk, T. Kavetskyy, D. Massana Roquero, O. Smutok, M. Gonchar, D.P. Královič, H. Švajdlenková, O. Šauša, P. Kalinay, H. Nosrati, M. Lebedevaite, S. Grauzeliene, J. Ostrauskaite, A. Kiv, B. Zgardzińska, UV-cured green polymers for biosensorics: correlation of operational parameters of highly sensitive biosensors with nano-volumes and adsorption properties, Materials, 15, 6607 (2022); https://doi.org/10.3390/ma15196607.
M. Goździuk, B. Zgardzińska, T. Kavetskyy, K. Zubrytska, O. Smutok, O. Šauša, M. Lebedevaite, J. Ostrauskaite, A. Kiv, Nanostructure research and amperometric testing to determine the detection capabilities of biopolymer matrices based on acrylated epoxidized soybean oil, Acta Physica Polonica A, 139(4), 432 (2021); https://doi.org/10.12693/APhysPolA.139.432.
T. Kavetskyy, Y. Kukhazh, K. Zubrytska, O. Smutok, O. Demkiv, M. Gonchar, O. Šauša, H. Švajdlenková, S. Kasetaite, J. Ostrauskaite, V. Boev, V. Ilcheva, T. Petkova, Controlling the network properties of polymer matrices for improvement of amperometric enzyme biosensors: contribution of positron annihilation, Acta Physica Polonica A, 137(2), 246 (2020); https://doi.org/10.12693/APhysPolA.137.246.
C. Mendes-Felipe, I. Isusi, O. Gómez-Jiménez-Aberasturi, S. Prieto-Fernandez, L. Ruiz-Rubio, M. Marco Sangermano, J.L. Vilas-Vilela, One-step method for direct acrylation of vegetable oils: A biobased material for 3D printing, Polymers, 15, 3136 (2023); https://doi.org/10.3390/polym15143136.
S. Grauzeliene, A.-S. Schuller, C. Delaite, J. Ostrauskaite, Biobased vitrimer synthesized from 2-hydroxy-3-phenoxypropyl acrylate, tetrahydrofurfuryl methacrylate and acrylated epoxidized soybean oil for digital light processing 3D printing, European Polymer Journal, 198, 112424 (2023); https://doi.org/10.1016/j.eurpolymj.2023.112424.
S. Grauzeliene, B. Kazlauskaite, E. Skliutas, M. Malinauskas, J. Ostrauskaite, Photocuring and digital light processing 3D printing of vitrimer composed of 2-hydroxy-2-phenoxypropyl acrylate and acrylated epoxidized soybean oil, Express Polymer Letters, 17(1), 54 (2023); https://doi.org/10.3144/expresspolymlett.2023.5.
M. Lebedevaite, V. Talacka, J. Ostrauskaite, High biorenewable content acrylate photocurable resins for DLP 3D printing, Journal of Applied Polymer Science, 138, e50233 (2021); https://doi.org/10.1002/app.50233.
M. Lebedevaite, J. Ostrauskaite, Influence of photoinitiator and temperature on photocross-linking kinetics of acrylated epoxidized soybean oil and properties of the resulting polymers, Industrial Crops & Products, 161, 113210 (2021); https://doi.org/10.1016/j.indcrop.2020.113210.
A. Navaruckiene, E. Skliutas, S. Kasetaite, S. Rekštytė, V. Raudoniene, D. Bridziuviene, M. Malinauskas, J. Ostrauskaite, Vanillin acrylate-based resins for optical 3D printing, Polymers, 12, 397 (2020); https://doi.org/10.3390/polym12020397.
M. Lebedevaite, J. Ostrauskaite, E. Skliutas, M. Malinauskas, Photoinitiator free resins composed of plant-derived monomers for the optical -3D printing of thermosets, Polymers, 11, 116 (2019); https://doi.org/10.3390/polym11010116.
H. Švajdlenková, A. Kleinová, O. Šauša, J. Rusnák, T.A. Dung, T. Koch, P. Knaack, Microstructural study of epoxy-based thermosets prepared by “classical” and cationic frontal polymerization, RSC Advances, 10, 41098 (2020); https://doi.org/10.1039/D0RA08298H.
R.A. Pethrick, Positron annihilation – A probe for nanoscale voids and free volume?, Progress in Polymer Science, 22, 1 (1997); https://doi.org/10.1016/S0079-6700(96)00023-8.
T. Goworek, Positronium as a probe of small free volumes in crystals, polymers and porous media, Annales Universitatis Mariae Curie-Sklodowska, Lublin – Polonia, 69, 1 (2014); https://doi.org/10.2478/umcschem-2013-0012.
M. Petriska, S. Sojak, V. Slugeň, Positron lifetime setup based on DRS4 evaluation board, Journal of Physics: Conference Series, 505, 012044 (2014); https://doi.org/10.1088/1742-6596/505/1/012044.
M. Petriska, S. Sojak, V. Kršjak, V. Slugeň, Digital triple coincidence positron lifetime setup with DRS4 and its benefits, AIP Conference Proceedings, 2411, 080009 (2021); https://doi.org/10.1063/5.0067492.
J. Kansy, Microcomputer program for analysis of positron annihilation lifetime spectra, Nuclear Instruments and Methods in Physics Research Section A, 374, 235 (1996); https://doi.org/10.1016/0168-9002(96)00075-7.
D.P. Královič, K. Cifraničová, H. Švajdlenková, D. Tóthová, O. Šauša, P. Kalinay, T. Kavetskyy, J. Ostrauskaite, O. Smutok, M. Gonchar, V. Soloviev, A. Kiv, Effect of aromatic rings in AESO-VDM biopolymers on the local free volume and diffusion properties of polymer matrix, Journal of Polymers and the Environment, 32, 2336 (2024); https://doi.org/10.1007/s10924-023-03097-1.
D.P. Královič, K. Cifraničová, O. Šauša, H. Švajdlenková, T. Kavetskyy, A. Kiv. The process of photopolymerization of acrylated soybean oil-based epoxides investigated by positron annihilation lifetime spectroscopy, Chemical Papers, 77, 7257 (2023); https://doi.org/10.1007/s11696-022-02607-0.
J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd, pp. 1-23 (2006); https://doi.org/10.1002/9780470027318.a5606.
H.-E. Shim, B.-M. Lee, D.-H. Lim, Y.-R. Nam, H.-J. Gwon, A comparative study of gamma-ray irradiation-induced oxidation: polyethylene, poly (vinylidene fluoride), and polytetrafluoroethylene, Polymers, 14, 4570 (2022); https://doi.org/10.3390/polym14214570.
S. Liu, Q. Li, J. Wang, M. Lu, W. Zhang, K. Wang, W. Liu, M. Wang, Study on the post-irradiation oxidation of polyethylenes using EPR and FTIR technique, Polymer Degradation and Stability, 196, 109846 (2022); https://doi.org/10.1016/j.polymdegradstab.2022.109846.
J.-P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems, Europhysics Letters, 4(9), 973 (1987); https://doi.org/10.1209/0295-5075/4/9/004.
N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems, Physics Reports, 438(5–6), 237 (2007); https://doi.org/10.1016/j.physrep.2006.11.001.
C.L. Webber, Jr., J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies, Journal of Applied Physiology, 76(2), 965 (1994); https://doi.org/10.1152/jappl.1994.76.2.965.
L.L. Trulla, A. Giuliani, J.P. Zbilut, C.L. Webber, Jr., Recurrence quantification analysis of the logistic equation with transients, Physics Letters A, 223(4), 255 (1996); https://doi.org/10.1016/S0375-9601(96)00741-4.
A. Kiv, A. Bryukhanov, V. Soloviev, A. Bielinskyi, T. Kavetskyy, D. Dyachok, I. Donchev, V. Lukashin, Complex network methods for plastic deformation dynamics in metals, Dynamics, 3(1), 34 (2023); https://doi.org/10.3390/dynamics3010004.
T. Kavetskyy, O. Zubrytska, M. Stievenard, O. Šauša, H. Švajdlenková, V. Soloviev, A. Bielinskyi, J. Ostrauskaite, A. Kiv, Complex network methods, PALS, ATR-FTIR and EPR study of photopolymerization, In: P. Petkov, M.E. Achour, C. Popov (Eds.), Nanotechnological Advances in Environmental, Cyber and CBRN Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht, Chap. 19, 265 (2025); https://doi.org/10.1007/978-94-024-2316-7_19.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Taras Kavetskyy, Oksana Zubrytska, Oles Matskiv, Martin Stievenard, Ondrej Šauša, Helena Švajdlenková, Volodymyr Soloviev, Andrii Bielinskyi, Jolita Ostrauskaite, Arnold Kiv

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




