Phase Transitions in Ag₈SnSe₆ and Ag₈SnS₆: Mössbauer and X-ray Study
DOI:
https://doi.org/10.15330/pcss.26.4.774-780Keywords:
argyrodite, canfieldite, phase transitions, superionic conductorsAbstract
The structural transformations accompanying the low-temperature phase transition (PT) β´→γ in the argyrodite Ag8SnSe6 characterized by mixed electron-ionic conductivity, have been studied using nuclear gamma resonance (NGR) and X-ray diffraction (XRD). Parallel Mössbauer studies were performed on the structurally related canfieldite Ag8SnS6. An abrupt decrease in the probability of the Mössbauer effect and isomer shifts was observed in argyrodite and canfieldite near 356 K and 445 K, respectively, corresponding to phase transitions in these compounds. Spatial models of the first and second coordination spheres of Ag8SnSe6 in the β´ and γ-modifications have been proposed.
References
Z. Zhang, Y. Shao, B. Lotsch et al., New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11, 1945 (2018); https://doi.org/10.1039/C8EE01053F.
J. B. Goodenough, Fast Ionic Conduction in Solids, in Physics and Chemistry of Electrons and Ions in Condensed Matter, edited by J. V. Acrivos, N. F. Mott, A. D. Yoffe, NATO ASI Series, Vol. 130, Springer, Dordrecht, 61 (1984); https://doi.org/10.1007/978-94-009-6440-2_61.
F. Zheng, M. Kotobuki, S. Song, M. O. Lai, L. Lu, Review on solid electrolytes for all-solid-state lithium batteries, J. Mater. Chem. A 6, 1125 (2018); https://doi.org/10.1039/C7TA10584J.
D. A. Weber, A. Senyshyn, K. S. Weldert et al., Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12, Chem. Mater. 28, 5905 (2016); https://doi.org/10.1021/acs.chemmater.6b02424.
F. A. Karamov,Superionic Conductors: Heterostructures and Elements of Functional Electronics Based on Them, Cambridge Int Science Pub., Cambridge, U.K. (2008).
L. Li, Y. Liu, J. Dai, A. Hong et al., High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C, 4, 5806 (2016); https://doi.org/10.1039/C6TC00810K.
I. Valov, R. Waser, J. R. Jameson, M. N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects, Nanotechnology, 22, 289502 (2011); https://doi.org/10.1088/0957-4484/22/28/289502.
M. Yang, G. Shao, B. Wu, J. Jiang, S. Liu, L. Huimin, Irregularly Shaped Bimetallic Chalcogenide Ag8SnS6 Nanoparticles as Electrocatalysts for Hydrogen Evolution, ACS Appl. Nano Mater. 4, 6745 (2021); https://doi.org/10.1021/acsanm.1c00769.
Y. Tingting, L. Li, Y. Zhang, Recent progress in solid electrolytes for energy storage devices, Adv. Funct. Mater. 30, 2000077 (2020); https://doi.org/10.1002/adfm.202000077.
W.-Q. Hu, Y.-F. Shi, L.-M. Wu, Synthesis and Shape Control of Ag8SnS6 Submicropyramids with High Surface Energy, Cryst. Growth Des. 12, 3458 (2012); https://doi.org/10.1021/cg201649d.
S. Lin, W. Li, Y. Pei, Thermally insulative thermoelectric argyrodites, Mater Today, 48, 198 (2021); https://doi.org/10.1016/j.mattod.2021.01.007.
W. F. Kuhs, R. Nitsche, K. Scheunemann, The argyrodites – a new family of tetrahedrally close-packed structures, Mater. Res. Bull. 14, 241 (1979); https://doi.org/10.1016/0025-5408(79)90125-9.
O. Gorochov, Les composés Ag8MX6 (М = Si, Ge, Sn et X = S, Se, Te)), Bull. Soc. Chim. Fr. 6, 2263 (1968).
C. W. F. T. Pistorius, O. Gorochov, Polymorphism and stability of the semiconducting series Ag8MX6 (M = Si, Ge, Sn, and X=S, Se, Te to high pressures, High Temp. - High Press. 2, 39 (1970).
M. V. Chekaylo, V. O. Ukrainets, G. A. Il’chuk, Y. P. Pavlovsky, N. A. Ukrainets, Phase Transformations in the Charge at the Synthesis of Compounds of Argirodyte Family Ag8XSe6 (X = Si, Ge, Sn) (X = Si, Ge, Sn), Phys. Chem. Solid State, 12, 191 (2011).
M. V. Chekaylo, V. O. Ukrainets, G. A. Ilchuk, N. A. Ukrainets, R. Y. Petrus, Ukrainian Patent No. 107754 (2015).
L. Akselrud, Y. Grin, V. Pecharsky, P. Zavalij, B. Baumgartner, E. Wolfel, Use of the CSD program package for structure determination from powder data, Mater. Sci. Forum, 1, 335 (1993).
M.V. Chekailo, L.G. Akselrud, R.E. Gladyshevskii, N.A. Ukrainets, Temperature dependence of the structures of β'- and γ-Ag8SnSe6 argyrodite, J. Solid State Chem. 332, 124541 (2024); https://doi.org/10.1016/j.jssc.2023.124541.
K. Robinson, G. V. Gibbs, P. H. Ribbe, Quadratic elongation: a quantitative measure of distortion in coordination polyhedra, Science, 172, 567 (1971); https://doi.org/10.1126/science.172.3983.567.
N. Wang, New data for Ag8SnS6 (canfieldite) and Ag8SnS6 (argyrodite), Neues Jahrb. Mineral. Monatsh. 6, 269 (1978).
C.-L. Lu, L. Zhang, Y.-W. Zhang et al., Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method, Chin. Phys. B, 24, 017501 (2015). https://doi.org/10.1088/1674-1056/24/1/017501.
I.V. Semkiv, H.A. Ilchuk, N.Y. Kashuba, V.M. Kordan, A.I. Kashuba, Synthesis, crystal and energy structure of the Ag8SnS6 crystal, Phys. Chem. Solid State, 24, 441 (2023); https://doi.org/10.15330/pcss.24.3.441-447.
M. Katada, Mössbauer effect of 119/Sn in tin sulfides and their related compounds, J. Sci. Hiroshima Univ. Ser. A-II, 39, 45 (1975).
D. L. Smith, J. J. Zuckerman, 119mSn Mössbauer spectra of tin-containing minerals, J. Inorg. Nucl. Chem. 29, 1203(1967); https://doi.org/10.1016/0022-1902(67)80358-0.
F.S. Nasredinov, S.A. Nemov, V.F. Masterov, P.P. Seregin, Mössbauer studies of two-electron tin centers with negative correlation energy in lead chalcogenides, Solid State Phys. 41, 1897 (1999); https://doi.org/10.1134/1.1131091.
I. B. Bersuker, Structure and Properties of Coordination Compounds, Khimiya, Leningrad (1971).
G. K. Wertheim, The Mössbauer Effect, Principles and Applications, Academic Press, New York (1964).
L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed., Cornell University Press, Ithaca, NY. (1960). https://archive.org/details/natureofthechemicalbondpauling
D.I. Bletskan, I.P. Studenyak, V.V. Vakulchak et al., Electronic structure of Ag8GeS6, Semicond. Phys. Quantum Electron. Optoelectron. 20, 19 (2017); https://doi.org/10.15407/spqeo20.01.019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. V. Chekaylo, S. I. Yushchuk, S. O. Yuryev, L. G. Akselrud, V. V. Mokliak

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




