On the structure of some minimax-antifinitary modules


  • V.A. Chupordia Oles Honchar Dnipropetrovsk National University, 72 Gagarin avenue, 49010, Dnipropetrovsk, Ukraine


minimax module; cocentralizer; module over group ring; minimax-antifinitary $RG$-module; generalized radical group
Published online: 2015-07-03


Let  $R$  be a ring and $G$ a group. An  $R$-module $A$ is said to be minimax, if $A$ includes a noetherian submodule $B$ such that  $A/B$  is artinian.  The author study a $\mathbb{Z}_{p^\infty}G$-module  $A$ such that $A/C_A(H)$ is minimax as a $\mathbb{Z}_{p^\infty}$-module for every proper not finitely generated subgroup $H$.

Article metrics
How to Cite
Chupordia, V. On the Structure of Some Minimax-Antifinitary Modules. Carpathian Math. Publ. 2015, 7, 120-132.

Most read articles by the same author(s)