# Growth estimates for the maximal term and central exponent of the derivative of a Dirichlet series https://doi.org/10.15330/cmp.12.2.269-279
Keywords: Dirichlet series, maximal term, central index, central exponent, Young-conjugate function
Published online: 2020-08-06

### Abstract

Let $A\in(-\infty,+\infty]$, $\Phi:[a,A)\to\mathbb{R}$ be a continuous function such that $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$ for every $x\in\mathbb{R}$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma):\sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline{\Phi}(x)=\widetilde{\Phi}(x)/x$ and $\Gamma(x)=(\widetilde{\Phi}(x)-\ln x)/x$ for all sufficiently large $x$, $(\lambda_n)$ be a nonnegative sequence increasing to $+\infty$, and $F(s)=\sum\limits\limits_{n=0}^\infty a_ne^{s\lambda_n}$ be a Dirichlet series such that its maximal term $\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}:n\ge0\}$ and central index $\nu(\sigma,F)=\max\{n\ge0:|a_n|e^{\sigma\lambda_n}=\mu(\sigma,F)\}$ are defined for all $\sigma<A$. It is proved that if $\ln\mu(\sigma,F)\le(1+o(1))\Phi(\sigma)$ as $\sigma\uparrow A$, then the inequalities $$\varlimsup_{\sigma\uparrow A}\frac{\mu(\sigma,F')}{\mu(\sigma,F)\overline{\Phi}\,^{-1}(\sigma)}\le1,\qquad \varlimsup_{\sigma\uparrow A}\frac{\lambda_{\nu(\sigma,F')}}{\Gamma^{-1}(\sigma)}\le1,$$ hold, and these inequalities are sharp.

Article metrics