Recovery of continuous functions of two variables from their Fourier coefficients known with error

Authors

  • K.V. Pozharska Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01601, Kyiv, Ukraine https://orcid.org/0000-0001-7599-8117
  • A.A. Pozharskyi Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01601, Kyiv, Ukraine
https://doi.org/10.15330/cmp.13.3.676-686

Keywords:

Fourier series, method of regularization, $\Lambda$-method of summation
Published online: 2021-12-10

Abstract

In this paper, we continue to study the classical problem of optimal recovery for the classes of continuous functions. The investigated classes $W^{\psi}_{2,p}$, $1 \leq p < \infty$, consist of functions that are given in terms of generalized smoothness $\psi$. Namely, we consider the two-dimensional case which complements the recent results from [Res. Math. 2020, 28 (2), 24-34] for the classes $W^{\psi}_p$ of univariate functions.

As to available information, we are given the noisy Fourier coefficients $y^{\delta}_{i,j} = y_{i,j} + \delta \xi_{i,j}$, $\delta \in (0,1)$, $i,j = 1,2, \dots$, of functions with respect to certain orthonormal system $\{ \varphi_{i,j} \}_{i,j=1}^{\infty}$, where the noise level is small in the sense of the norm of the space $l_p$, $1 \leq p < \infty$, of double sequences $\xi=( \xi_{i,j} )_{i,j=1}^{\infty}$ of real numbers. As a recovery method, we use the so-called $\Lambda$-method of summation given by certain two-dimensional triangular numerical matrix $\Lambda = \{ \lambda_{i,j}^n \}_{i,j=1}^n$, where $n$ is a natural number associated with the sequence $\psi$ that define smoothness of the investigated functions. The recovery error is estimated in the norm of the space $C ([0,1]^2)$ of continuous on $[0,1]^2$ functions.

We showed, that for $1\leq p < \infty$, under the respective assumptions on the smoothness parameter $\psi$ and the elements of the matrix $\Lambda$, it holds \[ \Delta( W^{\psi}_{2,p}, \Lambda, l_p)= \sup\limits_{ y \in W^{\psi}_{2,p} } \sup\limits_{\| \xi \|_{l_p} \leq 1} \Big\| y - \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \lambda_{i,j}^n ( y_{i,j} + \delta \xi_{i,j}) \varphi_{i,j} \Big\|_{C ([0,1]^2)} \ll \frac{ n^{\beta + 1 - 1/{p}}}{\psi(n)}.\]

Article metrics
How to Cite
(1)
Pozharska, K.; Pozharskyi, A. Recovery of Continuous Functions of Two Variables from Their Fourier Coefficients Known With Error. Carpathian Math. Publ. 2021, 13, 676-686.