Bernstein-Nikol'skii-type inequalities for trigonometric polynomials

Authors

  • H.M. Vlasyk State University of Telecommunications, 7 Solomyanska str., Kyiv, Ukraine https://orcid.org/0000-0002-0680-4128
  • V.V. Sobchuk Taras Shevchenko National University, 4 Glushkov ave., Kyiv, Ukraine
  • V.V. Shkapa State University of Telecommunications, 7 Solomyanska str., Kyiv, Ukraine
  • I.V. Zamrii State University of Telecommunications, 7 Solomyanska str., Kyiv, Ukraine https://orcid.org/0000-0001-5681-1871
https://doi.org/10.15330/cmp.14.1.147-157

Keywords:

$(\psi, \beta)$-derivative, Bernstein-Nikol'skii inequality
Published online: 2022-06-17

Abstract

We obtain order estimates for Bernstein-Nikol’skii-type inequalities for trigonometric polynomials with an arbitrary choice of harmonics. It is established that in the case $ q = \infty $, $ 1 <p \leq2 $ these inequalities for trigonometric polynomials with arbitrary choice of harmonics and for ordinary trigonometric polynomials has different order of estimates.

Article metrics
How to Cite
(1)
Vlasyk, H.; Sobchuk, V.; Shkapa, V.; Zamrii, I. Bernstein-Nikol’skii-Type Inequalities for Trigonometric Polynomials. Carpathian Math. Publ. 2022, 14, 147-157.