Regular behavior of subharmonic in space functions of the zero kind

Authors

  • M.V. Zabolotskyi Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine https://orcid.org/0000-0001-6102-707X
  • T.M. Zabolotskyi Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine https://orcid.org/0000-0003-0524-0428
  • S.I. Tarasyuk Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
  • Yu.M. Hal Drohobych Ivan Franko State Pedagogical University, 24 Franko Str., 82100, Drohobych, Ukraine
https://doi.org/10.15330/cmp.16.1.84-92

Keywords:

regular growth, subharmonic function, Riesz measure, proximate order
Published online: 2024-05-12

Abstract

Let $u$ be a subharmonic in $\mathbb{R}^m$, $m\geq 3$, function of the zero kind with Riesz measure $\mu$ on negative axis $Ox_1$, $n(r,u)=\mu\left(\{x\in\mathbb{R}^m \colon |x|\leq r\}\right)$, \[N(r,u)=(m-2)\int_1^r n(t,u)/t^{m-1}dt,\] $\rho(r)$ is a proximate order, $\rho(r)\to\rho$ as $r\to+\infty$, $0<\rho<1$. We found the asymptotic of $u(x)$ as $|x|\to+\infty$ by the condition $N(r,u)=\left(1+o(1)\right)r^{\rho(r)}$, $r\to+\infty$. We also investigated the inverse relationship between a regular growth of $u$ and a behavior of $N(r,u)$ as $r\to+\infty$.

Article metrics
How to Cite
(1)
Zabolotskyi, M.; Zabolotskyi, T.; Tarasyuk, S.; Hal, Y. Regular Behavior of Subharmonic in Space Functions of the Zero Kind. Carpathian Math. Publ. 2024, 16, 84-92.