On spectral radius and Nordhaus-Gaddum type inequalities of the generalized distance matrix of graphs

Authors

  • M. Merajuddin Aligarh Muslim University, Aligarh, India
  • S. Bhatnagar Aligarh Muslim University, Aligarh, India
  • S. Pirzada University of Kashmir, 190006, Srinagar, Kashmir, India https://orcid.org/0000-0002-1137-517X
https://doi.org/10.15330/cmp.14.1.185-193

Keywords:

distance matrix, generalized distance matrix, spectral radius, generalized distance energy, Nordhaus-Gaddam type inequality
Published online: 2022-06-23

Abstract

If $Tr(G)$ and $D(G)$ are respectively the diagonal matrix of vertex transmission degrees and distance matrix of a connected graph $G$, the generalized distance matrix $D_{\alpha}(G)$ is defined as $D_{\alpha}(G)=\alpha ~Tr(G)+(1-\alpha)~D(G)$, where $0\leq \alpha \leq 1$. If $\rho_1 \geq \rho_2 \geq \dots \geq \rho_n$ are the eigenvalues of $D_{\alpha}(G)$, the largest eigenvalue $\rho_1$ (or $\rho_{\alpha}(G)$) is called the spectral radius of the generalized distance matrix $D_{\alpha}(G)$. The generalized distance energy is defined as $E^{D_{\alpha}}(G)=\sum_{i=1}^{n}\left|\rho_i -\frac{2\alpha W(G)}{n}\right|$, where $W(G)$ is the Wiener index of $G$. In this paper, we obtain the bounds for the spectral radius $\rho_{\alpha}(G)$ and the generalized distance energy of $G$ involving Wiener index. We derive the Nordhaus-Gaddum type inequalities for the spectral radius and the generalized distance energy of $G$.

Article metrics
How to Cite
(1)
Merajuddin, M.; Bhatnagar, S.; Pirzada, S. On Spectral Radius and Nordhaus-Gaddum Type Inequalities of the Generalized Distance Matrix of Graphs. Carpathian Math. Publ. 2022, 14, 185-193.