Asymptotic estimates for the widths of classes of functions of high smothness

Authors

  • A.S. Serdyuk Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01601, Kyiv, Ukraine
  • I.V. Sokolenko Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01601, Kyiv, Ukraine https://orcid.org/0000-0002-8534-4616
https://doi.org/10.15330/cmp.15.1.246-259

Keywords:

Bernstein width, Kolmogorov width, linear width, projection width, Fourier sum, Weyl-Nagy class, class of the generalized Poisson integrals, $(\psi,\bar{\beta})$-integral, asymptotic equality
Published online: 2023-06-30

Abstract

We find two-sided estimates for Kolmogorov, Bernstein, linear and projection widths of the classes of convolutions of $2\pi$-periodic functions $\varphi$, such that $\|\varphi\|_2\le1$, with fixed generated kernels $\Psi_{\bar{\beta}}$, which have Fourier series of the form $$\sum\limits_{k=1}^\infty \psi(k)\cos(kt-\beta_k\pi/2),$$ where $\psi(k)\ge0,$ $\sum\psi^2(k)<\infty, \beta_k\in\mathbb{R}$. It is shown that for rapidly decreasing sequences $\psi(k)$ (in particular, if $\lim\limits_{k\rightarrow\infty}{\psi(k+1)}/{\psi(k)}=0$) the obtained estimates are asymptotic equalities. We establish that asymptotic equalities for widths of this classes are realized by trigonometric Fourier sums.

Article metrics
How to Cite
(1)
Serdyuk, A.; Sokolenko, I. Asymptotic Estimates for the Widths of Classes of Functions of High Smothness. Carpathian Math. Publ. 2023, 15, 246-259.