Fractal Dimension and Parameters of the Grunasena Polymer Systems with Negative Poissonratio

Authors

  • T.N. Shevchuk Rivne State Humanitarian University
  • N.A. Bordjuk Rivne State Humanitarian University

DOI:

https://doi.org/10.15330/pcss.17.4.476-481

Keywords:

polymer systems, fractal value, Poisson's ratio, parameter Grunaisen, cluster model, macromolel flexibility

Abstract

Based on the principles of fractal approach and synergy of structure formation processes modeled in polymer ausketykah based on thermoplastic polyurethane filled with powder of iron (Fe), molybdenum (Mo) and tungsten (W). Within the cluster model filled polymers shown that clusters and mizhklasterni area is nanoutvorenyamy.To study defined lattice of acoustic parameters of the Grunasena. Modeled filled polymer such systems, using fractal dimensions determined by the dimensions of boundary layers.

References

[1] Ju. S. Lipatov, Fiziko-himicheskieosnovynapolnenijapolimerov (Himija, Moskva, 1991).
[2] M. A. Bordyuk, T. M. Shevchuk, B. S. Kolupayev, Fizyka polimeriv. Teoriya (RDHU, Rivne, 2012).
[3] Y. Jack Weitsman, Fluid Effects in Polymers and Polymers Composites (Springer Science + Business Media, 2012).
[4] R. S. Lakes, CellularPolymers 11, 466 (1992).
[5] J. B. Choi, R. S. Lakes, J. Of Composite Materials 29(1), 113 (1995).
[6] V. V. Novikov, K. W. Wojciechowski, Fizika tverdogo tela 41(12), 2147 (1999).
[7] D. A. Konek, K. V. Vojcehovski, Ju. M. Pleskachevskij, S. V. Shil'ko, Mehanika kompozitnih materialov i konstrukcij 10(1), 35 (2004).
[8] E. A. Friis, R. S. Lakes, J. B. Park, J. Mater. Sci. 23, 4406 (1988).
[9] Al. Al. Berlin, L. Rotenburg, R. Basjerst, Vysokomolekuljarnye soedinenija B. 33(8), 619 (1991).
[10] Al. Al. Berlin, L. Rotenburg, R. Basjerst, Vysokomolekuljarnye soedinenija A. 34(7) 6 (1992).
[11] S. Xinchun, R.S. Lakes, Phys. Stat. Sol. (b). 244(3), 1008 (2007).
[12] M. C. Rechtsman, F. H. Stillinger, S. Torguato, Physical Review Letters. 101 (8), 085501-1 ( 2007).
[13] D. Li, T. Jaglinski, D. S. Stone, R. S. Lakes, Applied Physics Letters. 101(25), 251903-1 (2012).
[14] Y. Sun, N. Pugno, Materials.6, 699 (2013).
[15] G. He, P. Liu, A.C. Griffin, C.W. Smith, K.E. Evans, Macromol. Chem. Phys. 206, 233 (2005).
[16] R. Lakes, Applied Physics Letters. 90(22), 221905 (2007).
[17] B. S. Kolupaev, Yu. S. Lipatov, V. I. Nikitshuk, N.A. Borduyk, O. M. Voloshin, Dopovidi Academii nauk Ukrainy 12, 130 (1993).
[18] B. S. Kolupaev, Ju. S. Lipatov, V. I. Nikitchuk, N. A. Bordjuk, O. M. Voloshin, Inzhenerno-fizicheskij zhurnal 69 (5), 726 (1996).
[19] V. A. Mashhenko, B. B. Kolupaєv, Fіzika kondensovanih visokomolekuljarnih sistem 8, 62 (2000).
[20] V. A. Mashhenko, O. M. Voloshin, B. B. Kolupaєv, Fіzika kondensovanih visokomolekuljarnih sistem 9, 36 (2002).
[21] Y. J. Park, J. K. Kim, Advancesin Materials Science and Engineering 2013 (ID 853289), 1 (2013).
[22] V. U. Novikov, G. V. Kozlov, Uspehi himii 69 (4), 378 (2000).
[23] B. S. Kolupaєv, M. A. Bordjuk, Fіzika kondensovanih visokomolekuljarnih sistem 10, 75 (2004).
[24] N. A. Bordjuk, T. N. Shevchuk, Vescі BDPU. Seryja 3. 4(82), 8 (2014).
[25] A. S. Balankin, Sinergetika deformiruemogo tela. Ch.1 (MO SSSR, Moskva, 1991).
[26] N. A. Bordjuk, B. S. Kolupaev, V. V. Levchuk, Ju. S. Lipatov, Fizika tverdogo tela 38(7), 2270 (1996).
[27] M. Bordjuk, S. Іvanіshhuk, B. Kolupaєv, Zhurnal fіzichnih doslіdzhen' 1 (2), 217 (1997).
[28] B. Zh. Dzhangurazov, G. V. Kozlov, G. E. Zaikov, A. K. Mikitaev, Internationa ljournal of nanomechanics scince and technology 1(1), 31 (2010).
[29] V. V. Novikov, Vіsnik Ukraїns'kogo materіaloznavchogo tovaristva 1(1), 71 (2008).
[30] G. V. Kozlov, V. N. Belousov, Ju. S. Lipatov, Doklady AN SSSR. 8(B), 48 (1990).
[31] G. V. Kozlov, V. U. Novikov, Uspehi fizicheskih nauk. 171(7), 717 (2001).
[32] G. V. Kozlov, Uspehi fizicheskih nauk. 185(1), 35 (2015).
[33] H. G. E. Hentshel, J. M. Deutch, Phys. Rev. A. 29 (12), 1609 (1984).

Published

2016-12-15

How to Cite

Shevchuk, T., & Bordjuk, N. (2016). Fractal Dimension and Parameters of the Grunasena Polymer Systems with Negative Poissonratio. Physics and Chemistry of Solid State, 17(4), 476–481. https://doi.org/10.15330/pcss.17.4.476-481

Issue

Section

Scientific articles