The Influence of Complex Doping on Kinetics of Decomposition and Thermal Stability of Mg-Based Mechanical Alloys

  • O.G. Ershova Frantsevich Institute for Problems of Materials Science of NAS of Ukraine
  • V.D. Dobrovolsky Frantsevich Institute for Problems of Materials Science of NAS of Ukraine
  • Yu.M. Solonin Frantsevich Institute for Problems of Materials Science of NAS of Ukraine
Keywords: mechanical alloy, hydrogen sorption properties, thermal stability, kinetics

Abstract

Mechanical alloys (MАs) were synthesized by the method of reactive mechanical alloying. At a hydrogen pressure of 0.1 MPa, with the use of thermal desorption spectroscopy, the thermal stability, the kinetics of hydrogen desorption from the hydride phase MgH2 of the obtained MAs were studied. It has been established that the complex doping by of Fe, Si, Ti, leads to a significant improvement in the of hydrogen desorption from the hydride phase MgH2 of MA synthesized by the RMA. Hydrogen capacity CH of MА after reactive grinding for 20 h. was found to be equal to 5.7 % wt. Due to this alloying, the decrease in the thermodynamic stability of MgH2 is not established. The tested materials showed a high potential as hydrogen storage alloys especially for stationary application.

References

[1] A. Bassetti, E. Bonetti, L. Pasquini, A. Montone, J. Grbovic, V. Antisari, J. Eur. Phys. B 43, 19 (2005) (doi: 10.1140/epjb/e2005-00023-9.)
[2] J.-L. Bobet, E. Akiba, B. Darriet, Int. J. Hydrogen Energy 26, 493(2001) (doi:10.1016/S0360-3199(00) 00082-3).
[3] S.-N. Kwon, S.-H. Baek, R. D. Mumm, S.-H. Hong, M.-Y. Song, Int. J. Hydrogen Energy 33, 4586 (2008) (doi:10.1016/j.ijhydene. 2008.05.097).
[4] J. Mao, Z. Guo, X. Yu, H. Liu, Z. Wu, Int. J. Hydrogen Energy 35, 4569 (2010) (doi: 10.1016/j.ijhydene.2010.02.107).
[5] C.X. Shang, M. Bououdina, Y. Song, Z.X. Guo, Int. J. Hydrogen Energy 29, 73 (2004) (doi:10.1016/S0360-3199(03)00045-4).
[6] O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, O.Yu. Khyzhun, A.Y. Koval, J. Alloys Compound 464 212 (2008) (doi:10.1016/j.jallcom.2007.10.064).
[7] O. Ershova, V. Dobrovolsky, R. Morozova, Yu. Solonin, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (T.N. Veziroglu (Ed.), Springer, Dordrecht, 2007).
[8] O. Ershova, V. Dobrovolsky, Yu. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (B. Baranowski (Ed) Springer Science + Business Media B.V., 2008).
[9] R.Sh. Rohit, P.T. Anand, M.A. Shaz, O.N. Srivastava, Int. J. Hydrogen Energy 38, 2778 (2013) (doi:10.1016/j.ijhydene.2012.11.073).
[10] Z. Degouche, J. Goyette, T.K. Bose, R. Schulz, Int. J. Hydrogen Energy 28, 983 (2003) (doi.org/10.1016/S0360-3199(02)00196-9).
[11] J. Huot, J.F. Pelletier, L.B. Lurio, M. Sutton, R. Schulz, J. Alloys Compound 348, 319(2003) (doi:10.1016/S0925-8388(02)00839-3).
[12] W. Oelerich, T. Klassen, R. Borman, J. Alloys Comp. 315, 237(2001) (doi.org/10.1016/S0925-8388(00)01284-6).
[13] Xi Chen, Jianxin Zou, Shuqing Huang, He Guangli, Ning Zhao, Xiaoqin Zeng, Wenjiang Ding, RSC Adv. 8, 18959 (2018) (doi: 10.1039/c8ra01963k).
[14] E. David, J. Achiev. Mat. Manufact. Eng. 20, 87 (2007).
[15] V.D. Dobrovolsky, O.G. Ershova, Yu.M. Solonin, O.Y. Khyzhun, V. Paul-Boncour, J. Alloys Comp. 465, 177 (2008) (doi:10.1016/j. jallcom. 2007 .10.125).
[16] M. Polanski, J. Bystrzycki J. Alloys Compd. 486, 697 (2009) (doi:10.1016 /j. ijhydene.2009.06.02).
[17] J.-C. Crivello1, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, Appl.Phys. A 122, 97 (2016) (doi:10.1007/s00339-016-9602-S).
[18] T. Sabitu, G. Gallo, A.J. Goudy, J. Alloys Compd. 499, 35(2010) (doi:10.1016/j.Jallcom.2010.03. 128).
[19] M. Tian, C. Shang J. Chem. Technol. Biotechnol. 86, 69 (2011) (doi:10.1002/jctb.2479).
[20] M. Sherif El-Eskandarany, H.S. AlMatrouk, Ehab Shaban, Ahmed Al-Duweesh, Materials Today: Proceedings 3, 2608(2016).
[21] C.X. Shang, Z.X. Guo J.Power Sources 129, 73 (2004) (doi:10.1016/j.jpowsour. 2003.11.013).
[22] S.N. Klyamkin, B.P. Tarasov, E.L. Straz, R.V. Lukashev, I.E. Gabis, E.A. Evard, A.P. Voyt, Int. Sci. J. Alternat. Energy Ecol. 1 (21), 27 (2005).
[23] T. Spassov, V. Rangelova, P. Solsona J. Alloys Compd. 398, 139 (2005) (doi:10.1016/j.jallcom. 2005.02.035).
[24] P. Delchev, P. Solsona, B. Drenchev, J. Alloys Compd. 388, 98 (2005)103 (doi:10.1016/j.Jall com. 2004. 07.001).
[25] A. Ming, Mater. Sci. Eng. B 117, 37(2005) (doi:10.1016/j.mseb.2004.10.017).
[26] A. Montone, J. Grbovič, A. Bassetti Int. J. Hydrogen Energy 31, 2088 (2006) (doi: 10.1016/j. ijhydene.2006.01.020).
[27] Z.G. Huang, Z.P. Guo, A. Calka, J. Alloys Compd. 427, 94 (2007) (doi:10.1016/j.jallcom. 2006. 03.069).
[28] M.A. Lillo-Ródenas, Z.X. Guo, K.F. Aguey-Zinsou, Carbon 46, 126 (2008) (doi:10.1016/j.carbon. 2013.01.058).
[29] O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, O.Yu. Khyzhun, A.Yu. Koval, Materials Chemistry and Physics 62, 408 (2015) (doi:10.1016/j.matchemphys.2015.06.007).
[30] K.G. Bambhaniya, G.S. Grewal, V. Shrinet, N.L. Sindh, T.P. Govindan, Int. J. Hydrogen Energy 37, 3671 (2012) (doi:10.1016/j.ijhydene.2011.04.099).
[31] O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, Fiz. Khim. Tverd. Tila 14 (1), 101 (2013).
[32] M. Bououdina, Z.X. Guo, J. Alloys Comp. 336, 222 (2002) (doi:10.1016/S0925-8388(01)01856-4).
[33] M. Tanniru, D.K. Slattery, F. Ebrahimi, Int. J. Hydrogen Energy 35, 3555 (2010) (doi:10.1016/j.ijhydene. 2010.01.109).
[34] M. Tanniru, D.K. Slattery, F. Ebrahimi, Int. J. Hydrogen Energy 36, 639 (2011) (doi:10.1016/j.ijhydene.2010.09.083).
[35] C. Zhou, Z. Z. Fang, J. Lu, X. Luo, C. Ren, P. Fan, Y. Ren, and X. Zhang, J. Phys. Chem. C118, 11526 (2014) ( doi:10.1021/ jp501306w).
[36] S. Bouaricha, L.P. Dodelet, D.Guay, J.Huot, S.Boily, R.Schulz, J. Alloys Compd. 297, 282 (2000) doi:10.1016/S0925-8388(99)00612-X.
[37] J.F. Stampfer, C.E. Holley, J.F. Suttle, J. Amer. Chem. Soc. 82, 3504 (1960) (doi:10.1021/ja01499 a006).
[38] O.G. Ershova, V.D. Dobrovolsky, O.Yu. Khyzhun, Yu.M. Solonin, Physics and chemistry of solid state 12 (4), 1044 (2011).
[39] John J. Vajo, J. Phys. Chem. B 108, 13977 (2004) (doi:10.1021/jp040060).
[40] M. Polanski, J. Bystrzycki, Int. J. Hydrogen Energy 34, 7692 (2009) (doi:10.1016/jihydene2009.06 002).
[41] D.A. Paskevicius, A. Sheppard, C.J. Chaudhary, C.J. Webb, E. Mac, A. Gray, H.Y. Tian, V.K. Peterson, E. Buckley, J. of Hydrogen Energy 36, 10779 (2011) (doi:10.1016/j.ijhydene.2011.05.132).
[42] Motoki Shimada, Hisashi Tamaki, Eiji Higuchi, J. of Materials and Chemical Engineering Jul. 2(3), 64 (2014).
[43] Anna-Lisa Chaudhary, M. Paskevicius, D.A. Sheppard, J. Alloys Compd. 623, 109 (2015) (doi.org/10.1016/j.jallcom.2014.10.086).
[44] J. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, T.R. Jensen, P.De Jongh, M. Latroche, G.S. Walker, C.J. Webb, V.A. Yartys, Appl. Phys. A 122, 85 (2016) (doi:10.1007/s00339-016-9601-1).
Published
2019-12-15
How to Cite
ErshovaO., DobrovolskyV., & Solonin Y. (2019). The Influence of Complex Doping on Kinetics of Decomposition and Thermal Stability of Mg-Based Mechanical Alloys. Physics and Chemistry of Solid State, 20(4), 406-415. https://doi.org/10.15330/pcss.20.4.406-415
Section
Scientific articles