Influence of the nano-WC content and Sintering Temperature on the Phase Composition of Hard Alloys in the System TiC–WC–VC–NiCr

  • S. Pukas Ivan Franko National University of Lviv
  • L. Zinko Ivan Franko National University of Lviv
  • N. German Ivan Franko National University of Lviv
  • R. Gladyshevskii Ivan Franko National University of Lviv
  • I. V. Koval Ternopil Ivan Puluj National Technical University
  • L. Bodrova Ternopil Ivan Puluj National Technical University
  • H. Kramar Ternopil Ivan Puluj National Technical University
  • S. Marynenko Ternopil Ivan Puluj National Technical University
Keywords: hard alloy, nano WC, fine-sized WC, X-ray powder diffraction, phase composition

Abstract

The effect of the WC content and the sintering temperature, as the main technological factor, on the phase composition of TiC–xWC–5VC–18NiCr alloys was investigated by X-ray phase analysis. It was established that the main phases in the investigated alloys were the NaCl-type quaternary (Ti,V,W)C phase and a solid solution of Cr in Ni. Depending on the size of the WC particles used for the preparation, the metal binder could be described by the formula Ni0.75Cr0.25 (for nano WC) or Ni0.5Cr0.5 (for fine-sized WC). In alloys prepared with fine-sized WC, elementary Cr and traces of the Cr3C2 and Cr23C6 were also found. With increasing content of nano-sized WC and sintering temperature the solubility of W in (Ti,V)C increased. No W2C phase was detected under the conditions of the investigation.

References

A. Laptiev, Z. Pakiela, O. Tolochyn, T. Brynk, J. Alloys Compd. 687, 135 (2016) (doi: 10.1016/j.jallcom.2016.05.343).

Z. Fu, J.H. Kong, S.R. Gajjala, R. Koc, J. Alloys Compd. 751, 316 (2018) (doi: 10.1016/j.jallcom.2018.04.124).

S. Yi, H. Yin, J. Zheng, D.F. Khan, X. Qu, Comput. Mater. Sci. 79, 417 (2013) (doi: 10.1016/j.commatsci.2013.06.031).

Y. Xu, Y. Zhang, S. Z. Hao, O. Perroud, C. Dong, Appl. Surf. Sci. 279, 137 (2013) (doi: 10.1016/j.apsusc.2013.04.053).

J. Pötschke, T. Gestrich, V. Richter, Int. J. Refract. Met. Hard Mater. 72, 117 (2018) (doi: 10.1016/j.ijrmhm.2017.12.016).

D.V. Suetin, N.I. Medvedeva, J. Alloys Compd. 681, 508 (2016) (doi: 10.1016/j.jallcom.2016.04.279).

I. Konyashin, L.I. Klyachko, Int. J. Refract. Met. Hard Mater. 49, 9 (2015) (doi: 10.1016/j.ijrmhm.2014.08.011).

F.F. Mammadov, IFAC-PapersOnLine 51(30), 641 (2018) (doi: 10.1016/j.ifacol.2018.11.231).

J. Sun, J. Zhao, Z. Li, X. Ni, A. Li, Ceram. Int. 43(2), 2686 (2017) (doi: 10.1016/j.ceramint.2016.11.086).

L. Bodrova, G. Kramar, I. Koval, V. Sushynskyi, S. Marynenko, V. Bukhta, Euromat 2011 (European Congress on Advanced Materials and Processes) (Montpellier 2 Univ., Montpellier, France, 2011), p. 1408.

V.I. Sushynskyi, H.M. Kramar, Ye.O. Isaiev, Specificity of Polycarbide Sintering Based on Hard Alloys with Fine- and Nano-sized Binder (Publishing Center of “Polytechnica” of Igor Sikorsky KPI, Kyiv, Ukraine, 2011).

S. Naboychenko, N.A. Yefimov, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Second Edition (O.D. Neikov (Ed.), Elsevier, Amsterdam, 2019).

N. Alharbi, K. Benyounis, L. Looney, J. Stokes, Synthesis and Properties of Nanostructured Cermet Coatings, In: Reference Module in Materials Science and Materials Engineering, (Elsevier, Amsterdam, 2018) (doi: 10.1016/B978-0-12-803581-8.10179-1).

A. Rajabi, M.J. Ghazali, Ceram. Int. 43(16), 14233 (2017) (doi: 10.1016/j.ceramint.2017.07.171).

J. Xiong, Z. Guo, B. Shen, D. Cao, Materials & Design 28(5), 1689 (2007) (doi: 10.1016/j.matdes.2006.03.005).

H.M. Kramar, L.H. Bodrova, M.M. Prokopiv, S.Yu. Marynenko, 18 Plansee seminar 2013 – International Conference on Refractory Metals and Hard Materials (Plansee SE, Reutte, Austria, 2013), p. 146.

O.V. Mul, I.V. Koval, L.G. Bodrova, H.M. Kramar, Euro PM2015 Proceedings: Hard Materials - Processing, 4 p. (2015).

Y. Sun, W. Su, H. Yang, J. Ruan, Ceram. Int. 41(10), 14482 (2015) (doi: 10.1016/j.ceramint.2015.07.086).

A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, J. Mater. Process. Technol. 164-165, 1068 (2005) (doi: 10.1016/j.jmatprotec.2005.02.198).

T. Li, Q. Li, J.Y.H. Fuh, P.C. Yu, C.C. Wu, Mater. Sci. & Eng. A 430(1-2), 113 (2006) (doi: 10.1016/j.msea.2006.05.118).

M.F. Morks, Y. Gao, N.F. Fahim, F.U. Yingqing, Mater. Lett. 60(8), 1049 (2006) (doi: 10.1016/j.matlet.2005.10.073).

H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys (American Society for Metals, Materials Park, Ohio, USA, 2000).

V.Z. Kublii, T.Ya. Velikanova, Powder Metall. Met. Ceram. 43, 630 (2004) (doi: 10.1007/s11106-005-0032-3).

A.I. Gusev, A.S. Kurlov, JETP Lett. (2007) (doi: 10/1134/s0021364007010079).

F.I. Chaplygin, Tungsten carbides (state diagram, crystal and electronic structure of structural phases of the W–C system) (2012) (www.kamet.com.ua/attachments/article/74/kv_1_2_1.pdf).

R.E. Gladyshevskii, Methods to Determine Crystal Structures. Textbook (Publishing Centre of Ivan Franko National University of Lviv, Lviv, Ukraine, 2015).

P. Villars, K. Cenzual (Eds.), Pearson’s Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2015/16 (ASM International, Materials Park, Ohio, USA, 2015).

R.A. Young (Ed.), The Rietveld Method (Oxford University Press, Oxford, United Kingdom, 1995).

R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, J. Appl. Crystallogr. 28, 366 (1995).

P. Villars, K. Cenzual, J.L.C. Daams, F. Hulliger, H. Okamoto, K. Osaki, A. Prince, S. Iwata, Pauling File. Inorganic Materials Database and Design System. Binaries Edition (Crystal Impact (Distributor), Bonn, Germany, 2001).

L. Bodrova, H. Kramar, Ya. Kovalchuk, S. Marynenko, I. Koval, Sci. J. Riga Techn. Univ. 57, 35 (2018).

Published
2020-09-30
How to Cite
PukasS., ZinkoL., GermanN., GladyshevskiiR., KovalI. V., BodrovaL., KramarH., & MarynenkoS. (2020). Influence of the nano-WC content and Sintering Temperature on the Phase Composition of Hard Alloys in the System TiC–WC–VC–NiCr. Physics and Chemistry of Solid State, 21(3), 496-502. https://doi.org/10.15330/pcss.21.3.496-502
Section
Scientific articles