Interaction of Components in the Lu-Ag-Si System at 500 ºC

  • B. Belan Ivan Franko National University of Lviv
  • M. Dzevenko Ivan Franko National University of Lviv
  • M. Daszkiewicz Institute of Low Temperature and Structure Research, Polish Academy of Sciences
  • R. Gladyshevskii Ivan Franko National University of Lviv
Keywords: ternary system, isothermal section, crystal structure

Abstract

Isothermal section of the Lu-Ag-Si system at 500ºC was studied by means of X-ray powder diffraction, microstructure and EDX-analyses in the whole concentration range. The existence of earlier reported binary compounds LuAg4, LuAg2, LuAg and LuSi2, LuSi, Lu5Si3, Lu5Si4 was confirmed. New binary compound Lu3Si5 (own str. type) was found. Almost none of the binary silicides dissolve more than 5 at.% of third component. The exception is the existence of the substitution type solid solutions based on LuAg2 (MoSi2-type structure), which dissolves up to 20 at.% Si, as well as on Lu5Si3 (Mn5Si3-type structure), which dissolves up to 15 at.% Ag. The crystal structure of the LuSi compound was redetermined by X-ray single crystal diffraction (TlI-type, space group Cmcm, a = 4.1493(3), b = 10.2641(7), c = 3.7518(2) Å, R = 0.0173, wR = 0.0415 for 173 independent reflections). No ternary compound is observed in the Lu-Ag-Si system.

Author Biographies

B. Belan, Ivan Franko National University of Lviv

Faculty of Chemistry

R. Gladyshevskii , Ivan Franko National University of Lviv

Faculty of Chemistry

References

O. Bardyn, B. Belan, O. Bodak, O. Protsyk, Z. Shpyrka, Visnyk Lviv Univ. Ser. Chem. 40, 57 (2001).

E. Cordruwisch, D. Kaczorowski, P. Rogl, A. Saccjne, R. Ferro, J. Alloys Compd. 320(2), 308 (2001) (https://doi.org/10.1016/S0925-8388(00)01474-2).

B. Belan, O. Bodak, R. Gladyshevskii, I. Soroka, B. Kuzhel, O. Protsyk, I. Stets, J. Alloys Compd. 396, 212 (2005) (https://doi.org/10.1016/j.jallcom.2004.12.035).

I. A. Savisyuk Phases, crystal structures and electrical properties of compounds in systems {Y, Pr} -Ag- {Si, Ge, Sn}, Abstract of the thesis for candidate degree (Lviv, 2000).

I. Savysyuk, O. Shcherban, N. Semuso, R. Gladyshevskii, E. Gladyshevskii, Chem. Met. Alloys. 5, 103 (2012).

O. V. Zaplatunsky, Yu. M. Prots, P. S. Salamakha, L. O. Muratova, O. Bodak, J. Alloys Compd. 232, Ll (1996) (https://doi.org/10.1016/0925-8388(95)01928-6).

P. Villars, K. Cenzual, R. Gladyshevskii, Handbook of Inorganic Substances (Walter de Gruyter, Berlin, 2017).

A. Iandelli, J. Less-Common Met. 113, L25 (1985) (https://doi.org/10.1016/0022-5088(85)90295-4).

P. Villars, K. Cenzual (Eds.), Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds, Release 2017/18 (ASM International, Materials Park, Ohio, USA, 2017).

R. W. Olesinski, A. B. Gokhale, G. J. Abbaschian, Bulletin of Alloy Phase Diagrams. 10, 635 (1989).

D. B. Wiles, A. Sakthivel, R. A. Young,Program DBW3.2s for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns. Version 9411.PC. (Atlanta, Georgia Institute of Thechnology, 1995).

Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171 (Rigaku Corporation, Oxford, UK, 2015).

G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015) (https://doi.org/10.1107/S2053229614024218).

B. Belan, M. Manyako, R. Gladyshevskii, R. Černý, XIV International Conference on Crystal Chemistry of Intermetallic Compounds (Lviv, 2019), p. 124.

I. Mayer, I. Shidlovsky, Inorg. Chem. 8, 1240 (1969) (https://doi.org/10.1021/ic50076a008).

G. S. Smith, A. G. Tharp, Q. C. Johnson, Acta Crystallogr. 22, 940 (1967) (https://doi.org/10.1107/S0365110X67001902).

E. I. Gladyshevskii, P. I. Krypyakevych, J. Struct. Chem. 5, 789 (1964) (https://doi.org/10.1007/BF00744231).

B. Belan, M. Manyako, M. Dzevenko, M. Daszkiewicz, R. Gladyshevskii, XXII International Online Seminar on Physics and Chemistry of Solids (Lviv, 2020), p. 47.

E. I. Gladyshevskii, Dopov. Akad. Nauk Ukr. RSR. 886 (1963) (in Ukrainian).

A. Iandelli, A. Palenzona, G. L. Olcese, J. Less-Common Met. 64, 213 (1979) (https://doi.org/10.1016/0022-5088(79)90172-3).

I. P. Mayer, E. Banks, B. Post, J. Phys. Chem. 66, 693 (1962) (https://doi.org/10.1021/j100810a028).

U. Schwarz, A. Wosylus, H. Rosner, W. Schnelle, A. Ormeci, K. Meier, A. I. Baranov, M. Nicklas, S. Leipe, C. J. Müller, Y. Grin, J. Am. Chem. Soc. 134, 13558 (2012) (https://doi.org/10.1021/ja3055194).

O. D. McMasters, K. A. Gschneidner Jr., R. F. Venteicher, Acta Crystallogr. B. 26, 1224 (1970) (https://doi.org/10.1107/S0567740870003928).

A. E. Dwight, J. W. Downey, R. A. Conner Jr., Acta Crystallogr. 22, 745 (1967) (https://doi.org/10.1107/S0365110X6700146X).

C. C. Chao, H. L. Luo, P. Duwez, J. Appl. Phys. 34(7) (1971) (https://doi.org/10.1063/1.1729720).

C. Suryanarayana, J. Less-Common Met. 35, 347 (1974) (https://doi.org/10.1016/0022-5088(74)90248-3).

J. Emsley The Elements, 3-th edition (Oxford University Press, Oxford, 1998).

Published
2021-02-24
How to Cite
[1]
BelanB., DzevenkoM., DaszkiewiczM. and Gladyshevskii R. 2021. Interaction of Components in the Lu-Ag-Si System at 500 ºC. Physics and Chemistry of Solid State. 22, 1 (Feb. 2021), 88-93. DOI:https://doi.org/10.15330/pcss.22.1.88-93.
Section
Scientific articles

Most read articles by the same author(s)