Adsorption of Copper Ions by Microwave Treated Bentonite

Authors

  • K. Stepova Львівський державний університет безпеки життєдіяльності
  • L. Sysa Lviv State University of Life Safety
  • A. Kontsur Lviv State University of Life Safety
  • O. Myakush Ukrainian National Forestry University

DOI:

https://doi.org/10.15330/pcss.21.3.537-544

Keywords:

bentonite, microwave, adsorption, copper, non-linear fitting

Abstract

Changes of bentonite surface structure under the influence of direct microwave irradiation during adsorpion of Cu2+ from concentrated solutions were investigated by X-ray and EDS analysis. The microwave treated bentonite (MTB) has been proved to have enhanced adsorption capacity for copper due to improved pore structure and some peculiarities of adsorption mechanism. The non-linear fitting of experimental data to the theoretical isotherms have demonstrated that the adsorption on natural bentonite fitted the Toth model, whilst microwave-treated bentonite fitted the Langmur-Freundlich model. The isotherm modeling allowed predicting the maximal adsorption capacities 44.8 mg/g. XRD and SEM analysis of MTB sample after adsorption indicated formation of microcrystals of individual copper compound. The adsorption on MTB sample takes place not only in pores or in monomolecular layer on the bentonite surface, but the prevalent mechanism is surface-induced co-precipitation of copper as microcrystals of individual copper compound.

References

D. Kratochvil, B.Volesky. Trends, Biotechnol. 16, 291 (1998) (DOI:10.1016/S0167-7799(98)01218-9).

I.C. Escobar, A.I. Schäfer, Sustainable water for the future: Water recycling versus desalination, 1th ed. (Elsevier, Amsterdam, Netherlands, 2010).

F.J. Hopcroft, Wastewater treatment concepts and practices, (Momentum Press, New York, USA, 2015).

S. Veli, B. Alyuz, J. Haz. Mat. 149, 226 (2007) (DOI:10.1016/j.jhazmat.2007.04.109).

F. Ayari, F. Srasra, M. Trabelsi-Ayadi, Desalination. 185, 391 (2005) (DOI:10.1016/j.desal.2005.04.046).

R. Zhu, Q. Chen, Q. Zhou, Y. Xi, H. He, Appl. Clay Sci. 123, 239 (2016) (DOI:10.1016/j.clay.2015.12.024).

M.K. Uddin, Chem. Eng. (308), 438 (2017) (DOI:10.1016/j.cej.2016.09.029).

S. Pandey, J. Mol. Liq. 241, 1091 (2017) (DOI:10.1016/j.molliq.2017.06.115).

S. de Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Sust. Mat. Technol. 9, 10 (2016) (DOI:10.1016/j.susmat.2016.06.002).

C.J. Van Oss, R.F. Giese, J. Dispersion Sci. Technol. 24, 363 (2003) (DOI:10.1081/DIS-120021795).

B. Legras, I. Polaert, M. Thomas, L. Estel, App. Therm. Eng. 57, 164 (2013) (DOI:10.1016/j.applthermaleng.2012.03.034).

J. Li, L. Zhu, W. Cai, J. Haz. Mat. 136, 251 (2006) (DOI:10.1016/j.jhazmat.2005.12.005).

K. Subannaju, Mat. Chem. Phys. 184, 345 (2016) (DOI:10.1016/j.matchemphys.2016.09.061).

B.S. Surendra, M. Veerabhadraswamy, H.G. Anil Kumar, B.K. Kendagannaswamy, H.P. Nagaswarupa, S.C. Prashanth, Materials Today: Proceedings. 4, 11727, (2017) (DOI:10.1016/j.matpr.2017.09.089).

S. Korichi, A. Elias, A. Mefti, A. Bensmaili, Appl. Clay Sci. 59–60, 76 (2012) (DOI:10.1016/j.clay.2012.01.020).

E.L. Foletto, D.S. Paz, A. Gundel, Appl. Clay Sci. 83–84, 63 (2013) (DOI:10.1016/j.clay.2013.08.017).

S. Baldassari, S. Komarneni, E. Mariani, C. Villa, Appl. Clay Sci. 31, 134 (2006) (DOI:10.1016/j.clay.2005.09.005).

Yu. Feng, T. Hu, M. Wu, J. Shangguan, H. Fan, J. Mi. Fuel Process. Technol. 148, 35 (2016) (DOI:10.1016/j.fuproc.2016.01.037).

L. Sysa, L. Shevchuk, A. Kontsur, Phys. Chem. Solid St. 18, 431 (2017).

A. Kontsur, L. Sysa, L. Shevchuk, Phys. Chem. Solid St. 19, 191 (2018).

L. Sysa, Yu. Rudyk, A. Kontsur, Ecological Safety, 24, 45 (2017).

A. Kontsur, Yu. Rudyk, L. Sysa, Ya. Kyryliv, Ecological Safety 25, 38 (2018).

L.V. Sysa, K.V. Stepova, M.A. Petrova, A.Z. Kontsur, Voprosy Khimii i Khimicheskoi Tekhnologii, 5, 126 (2019) (DOI:10.32434/0321-4095-2019-126-5-126-134).

A. Kontsur, L. Sysa, M. Petrova, Eastern-European Journal of Enterprise Technologies 6, 26 (2017) (DOI:10.15587/1729-4061.2017.116090).

D. Kinniburgh, Environmental Science & Technology 20 (9), 895 (1986).

H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Water Research 120, 88 (2017) (DOI: 10.1016/j.watres.2017.04.014).

D.A. Ratkowsky, Handbook of nonlinear regression models (Marcel Dekker Inc., New York, 1990).

R.G. Duggleby, Eur J Biochem 109(1), 93 (1980) (DOI: 10.1111/j.1432-1033.1980.tb04771.x).

B. Subramanyam, A. Das, J. Environ. Health Sci. Eng. 12(1), 92 (2014) (DOI: 10.1186/2052-336x-12-92).

H.J. Berthold, J. Born, R. Wartchow. Z. Kristallogr. 183, 309 (1988).

H.T. Jr. Evans, M.E. Mrose. Am. Mineral. 62, 491 (1997).

C.H. Giles, D. Smith, A. Huitson, J Colloid Interface Sci. 47(3), 755 (1974) (DOI: 10.1016/0021-9797(74)90252-5).

Published

2020-09-30

How to Cite

Stepova, K., Sysa, L., Kontsur, A., & Myakush, O. (2020). Adsorption of Copper Ions by Microwave Treated Bentonite . Physics and Chemistry of Solid State, 21(3), 537–544. https://doi.org/10.15330/pcss.21.3.537-544

Issue

Section

Scientific articles