Methods of Titanium Dioxide Synthesis (Review)

  • I. F. Mironyuk Vasyl Stefanyk Precarpathian National University
  • L. M. Soltys Vasyl Stefanyk Precarpathian National University
  • T. R. Tatarchuk Vasyl Stefanyk Precarpathian National University
  • Kh. O. Savka Vasyl Stefanyk Precarpathian National University
Keywords: titanium dioxide, sol-gel method, hydrothermal method, aquacomplex precurs, anatase, rutile, brookite, template

Abstract

TiO2-based nanomaterials are attracting much attention in many areas, such as photocatalysis, photoelectricity, probing, electrochromism, photochromism, etc. They are widely used in paints, polymers, sunscreens, and toothpaste. There are various ways of synthesis that affect the size, shape, and crystallinity of TiO2 nanoparticles. The main methods of obtaining titanium dioxide (with the structure of anatase, rutile or brookite) in the form of spheres, rods, fibers, and tubes include: sol-gel technology, hydrothermal and solvothermal methods, microwave method involving high-frequency electromagnetic waves, template method, electrodeposition, a sonochemical method using ultrasound, chemical and physical vapor deposition, "green" methods, etc. This literature review presents modern scientific results on the production of TiO2 nanoparticles by various methods.

References

A. Fujishima, K. Honda, Nature, 238, 37 (1972) (doi: 10.1038/238037a0).

K. Nakata, A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev., 13 (3), 169 (2012) (doi: 10.1016/j.jphotochemrev.2012.06.001).

I.F. Mironyuk, L.M. Soltys, T.R. Tatarchuk, V.I. Tsinurchyn, Phys. Chem. Solid State, 21 (2), 300 (2020) (doi: 10.15330/pcss.21.2.300-311).

I.F. Mironyuk, V.L. Cheliadyn, Phys. Chem. Solid State, 11 (4), 815 (2010).

A. Kumar, Am. J. Nano Res. Appl., 6 (1), 1 (2018) (doi: 10.11648/j.nano.20180601.11).

B. Niu, X. Wang, K. Wu, X. He, R. Zhang, Materials (Basel), 11 (10), 1 (2018) (doi: 10.3390/ma11101910).

N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, Colloids Surfaces B Biointerfaces, 178, 385 (2019) (doi: 10.1016/j.colsurfb.2019.03.013).

H. Zhang, J.F. Banfield, Chem. Rev., 114 (19), 9613 (2014) (doi: 10.1021/cr500072j).

M.T. Noman, M.A. Ashraf, A. Ali, Environ. Sci. Pollut. Res., 26 (4), 3262 (2019) (doi: 10.1007/s11356-018-3884-z).

O. Kaygili, N. Bulut, C. Tatar, T. Ates, T. İnce, Int. J. Innov. Eng. Appl., 1 (2), 38 (2017).

M.B. Askari, Z. Tavakoli Banizi, M. Seifi, S. Bagheri Dehaghi, P. Veisi, Optik (Stuttg), 149, 447 (2017) (doi: 10.1016/j.ijleo.2017.09.078).

I.B. Dorosheva, A.A. Valeeva, A.A. Rempel, AIP Conf. Proc., 1886, 020006 (2017) (doi: 10.1063/1.5002903).

A.H. Ramelan, S. Wahyuningsih, S. Saputro, E. Supriyanto, Q.A. Hanif, IOP Conf. Ser. Mater. Sci. Eng., 176 (1), 012013 (2017) (doi: 10.1088/1757-899X/176/1/012013).

R.S. Dubey, Mater. Lett., 215, 312 (2018) (doi: 10.1016/j.matlet.2017.12.120).

R. Sharma, A. Sarkar, R. Jha, A. Kumar Sharma, D. Sharma, Int. J. Appl. Ceram. Technol., 17 (3), 1400 (2020) (doi: 10.1111/ijac.13439).

T. Farooq, K. Surana, S. Mukherjee, Mater. Today Proc., 2 (2020) (doi: 10.1016/j.matpr.2020.02.044).

R. Balasubramanian, M. Fathima Rigana, S. Balaji, A. Selvamani, M. Sarojadevi, New J. Chem., 41 (7), 2815 (2017) (doi: 10.1039/c6nj03164a).

I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V.M. Gun’ko, I. Mykytyn, J. Mol. Liq., 282, 587 (2019) (doi: 10.1016/J.MOLLIQ.2019.03.026).

I. Mironyuk, T. Tatarchuk, H. Vasylyeva, M. Naushad, I. Mykytyn, J. Environ. Chem. Eng., 7 (6), 103430 (2019) (doi: 10.1016/j.jece.2019.103430).

I. Mironyuk, T. Tatarchuk, M. Naushad, H. Vasylyeva, I. Mykytyn, J. Mol. Liq., 285, 742 (2019) (doi: 10.1016/j.molliq.2019.04.111).

M. Kobayashi, H. Kato, T. Miyazaki, M. Kakihana, Ceramics, 2 (1), 56 (2019) (doi: 10.3390/ceramics2010005).

S. Kundu, V. Polshettiwar, ChemPhotoChem., 2 (9), 796 (2018) (doi: 10.1002/cptc.201800101).

R. Govindaraj, N. Santhosh, M. Senthil Pandian, P. Ramasamy, J. Cryst. Growth, 468, 125 (2017) (doi: 10.1016/j.jcrysgro.2016.11.004).

G. Rajamanickam, S. Narendhiran, S.P. Muthu, S. Mukhopadhyay, R. Perumalsamy, Chem. Phys. Lett., 689, 19 (2017) (doi: 10.1016/j.cplett.2017.09.044).

B. Zeng, W. Zeng, J. Mater. Sci. Mater. Electron., 28 (18), 13821 (2017) (doi: 10.1007/s10854-017-7228-4).

Z. Zhu, S.J. Lin, C.H. Wu, R.J. Wu, Sensors Actuators, A Phys., 272 (2), 288 (2018) (doi: 10.1016/j.sna.2018.02.006).

W. Qi, J. Du, Y. Peng, W. Wu, Z. Zhang, X. Li, K. Li, K. Zhang, C. Gong, M. Luo, H.L. Peng, Mater. Chem. Phys., 207, 435 (2018) (doi: 10.1016/j.matchemphys.2017.12.083).

D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. Mater. Electron., 28 (11), 7784 (2017) (doi: 10.1007/s10854-017-6474-9).

S. Kurajica, I. Minga, I. Grčić, V. Mandić, M. Plodinec, Mater. Chem. Phys., 196, 194 (2017) (doi: 10.1016/j.matchemphys.2017.04.064).

W. Liu, Y. Xu, W. Zhou, X. Zhang, X. Cheng, H. Zhao, S. Gao, L. Huo, J. Mater. Sci. Technol., 33 (1), 39 (2017) (doi: 10.1016/j.jmst.2016.04.007).

A. Mezni, N. Ben Saber, M.M. Ibrahim, M. El-Kemary, A. Aldalbahi, P. Feng, L. Samia Smiri, T. Altalhi, New J. Chem., 41 (12), 5021 (2017) (doi: 10.1039/c7nj00747g).

F.K.M. Alosfur, A.A. Ouda, N.J. Ridha, S.H. Abud, Mater. Res. Express, 6 (6), 065028 (2019) (doi: 10.1088/2053-1591/ab0cca).

G. Cabello, R.A. Davoglio, E.C. Pereira, J. Electroanal. Chem., 794, 36 (2017) (doi: 10.1016/j.jelechem.2017.04.004).

J. Kang, L. Gao, M. Zhang, J. Pu, L. He, R. Ruan, M. Omran, J. Peng, G. Chen, Adv. Powder Technol., 31 (3), 1140 (2020) (doi: 10.1016/j.apt.2019.12.042).

M.A. Abdolahi Sadatlu, N. Mozaffari, Sol. Energy, 133, 24 (2016) (doi: 10.1016/j.solener.2016.03.056).

P. Selvaraj, A. Roy, H. Ullah, P. Sujatha Devi, A.A. Tahir, T.K. Mallick, S. Sundaram, Int. J. Energy Res., 43 (1), 523 (2019) (doi: 10.1002/er.4288).

S. Wongchareon, G. Panomsuwan, Mater. Lett., 228, 482 (2018) (doi: 10.1016/j.matlet.2018.06.089).

B. Liu, Z. Luo, A. Federico, W. Song, S.L. Suib, J. He, Chem. Mater., 27 (18), 6173 (2015) (doi: 10.1021/acs.chemmater.5b02248).

G. He, J. Zhang, Y. Hu, Z. Bai, C. Wei, Appl. Catal. B Environ., 250, 301 (2019) (doi: 10.1016/j.apcatb.2019.03.027).

K.Ö. Hamaloğlu, E. Sağ, A. Tuncel, J. Porous Mater., 26 (2), 419 (2019) (doi: 10.1007/s10934-018-0619-y).

Q. Zhang, C. Li, Catal. Today, (2019) (doi: 10.1016/j.cattod.2019.11.019).

Q. Zhang, C. Li, Nanomaterials, 10 (5), (2020) (doi: 10.3390/nano10050911).

A. Jedrzejczak, D. Batory, M. Prowizor, M. Dominik, M. Smietana, M. Cichomski, A. Kisielewska, W. Szymanski, W. Kozlowski, M. Dudek, Thin Solid Films, 693, 137697 (2020) (doi: 10.1016/j.tsf.2019.137697).

M.N. Subramaniam, P.S. Goh, W.J. Lau, A.F. Ismail, M. Gürsoy, M. Karaman, Appl. Surf. Sci., 484, 740 (2019) (doi: 10.1016/j.apsusc.2019.04.118).

H. Zhao, X. Liu, S.D. Tse, J. Nanoparticle Res., 10 (6), 907 (2008) (doi: 10.1007/s11051-007-9330-7).

A. Moiseev, F. Qi, J. Deubener, A. Weber, Chem. Eng. J., 170 (1), 308 (2011) (doi: 10.1016/j.cej.2011.03.057).

A. Moiseev, M. Krichevskaya, F. Qi, A.P. Weber, J. Deubener, Chem. Eng. J., 228, 614 (2013) (doi: 10.1016/j.cej.2013.05.038).

S. Jõks, D. Klauson, M. Krichevskaya, S. Preis, F. Qi, A. Weber, A. Moiseev, J. Deubener, Appl. Catal. B Environ., 111-112, 1 (2012) (doi: 10.1016/j.apcatb.2011.09.007).

A. Mbonyiryivuze, S. Zongo, A. Diallo, S. Bertrand, E. Minani, L.L. Yadav, B. Mwakikunga, S.M. Dhlamini, M. Maaza, Phys. Mater. Chem., 3 (1), 12 (2015) (doi: 10.12691/pmc-3-1-3).

N. Saikumari, T. Preethi, B. Abarna, G.R. Rajarajeswari, J. Mater. Sci. Mater. Electron., (2019) (doi: 10.1007/s10854-019-00994-x).

M. Sundrarajan, K. Bama, M. Bhavani, S. Jegatheeswaran, S. Ambika, A. Sangili, P. Nithya, R. Sumathi, J. Photochem. Photobiol. B Biol., 171, 117 (2017) (doi: 10.1016/j.jphotobiol.2017.05.003).

D. Hariharan, A. Jegatha Christy, J. Mayandi, L.C. Nehru, Mater. Lett., 222, 45 (2018) (doi: 10.1016/j.matlet.2018.03.109).

K. Thandapani, M. Kathiravan, E. Namasivayam, I.A. Padiksan, G. Natesan, M. Tiwari, B. Giovanni, V. Perumal, Environ. Sci. Pollut. Res., 25 (11), 10328 (2018) (doi: 10.1007/s11356-017-9177-0).

S. Balaji, R. Guda, B.K. Mandal, M. Kasula, E. Ubba, F.R.N. Khan, Res. Chem. Intermed., (2019) (doi: 10.1007/s11164-018-03720-0).

M.N. Morshed, X. Shen, H. Deb, S. Al Azad, X. Zhang, R. Li, J. Nat. Fibers, 17 (1), 41 (2020) (doi: 10.1080/15440478.2018.1465506).

T.W. Chen, S. Chinnapaiyan, S.M. Chen, A. Hossam Mahmoud, M.S. Elshikh, H. Ebaid, M. Taha Yassin, Ultrason. Sonochem., 62, 104872 (2020) (doi: 10.1016/j.ultsonch.2019.104872).

A. Muhulet, C. Tuncel, F. Miculescu, A.M. Pandele, C. Bobirica, C. Orbeci, L. Bobirica, A. Palla-Papavlu, S.I. Voicu, Appl. Phys. A Mater. Sci. Process., 126 (3), 1 (2020) (doi: 10.1007/s00339-020-3408-9).

V.S. Protsenko, A.A. Kityk, E.A. Vasil’eva, A. V. Tsurkan, F.I. Danilov, Electrodeposition of Composite Coatings as a Method for Immobilizing TiO2 Photocatalyst (In book: American Jewish Year Book, 2019) (doi: 10.1007/978-3-030-10609-6_10).

Y. Ghayeb, M.M. Momeni, E. Ghonjalipoor, Appl. Phys. A Mater. Sci. Process., 125 (5), (2019) (doi:10.1007/s00339-019-2521-0).

A.S. Martins, P.J.M. Cordeiro-Junior, G.G. Bessegato, J.F. Carneiro, M.V.B. Zanoni, M.R. de V. Lanza, Appl. Surf. Sci., 464, 664 (2019) (doi: 10.1016/j.apsusc.2018.09.054).

A.K. Ayal, Z. Zainal, H.N. Lim, Z.A. Talib, Y.C. Lim, S.K. Chang, A.M. Holi, Mater. Res. Bull., 106, 257 (2018) (doi: 10.1016/j.materresbull.2018.05.040).

Published
2020-09-30
How to Cite
MironyukI. F., SoltysL. M., TatarchukT. R., & SavkaK. O. (2020). Methods of Titanium Dioxide Synthesis (Review). Physics and Chemistry of Solid State, 21(3), 462-477. https://doi.org/10.15330/pcss.21.3.462-477
Section
Scientific articles