Atomic Structure and Morphology of Fumed Silica

  • I. F. Myronyuk Vasyl Stefanyk Precarpathian National University
  • V. O. Kotsyubynsky Vasyl Stefanyk Precarpathian National University
  • T. V. Dmytrotsa Ivano-Frankivsk National Medical University
  • L. M. Soltys Vasyl Stefanyk Precarpathian National University
  • V. M. Gun’ko Chuiko Institute of Surface Chemistry
Keywords: fumed silica, crystalline silica, silica clusters, siloxane bond


The comparative analysis of atomic structure and morphology of fumed silica nanoparticles prepared under different synthesis conditions are studied using TEM, FTIR, quantum chemistry, and low-temperature nitrogen adsorption methods. It was determined that the structure of amorphous silica nanoparticles is formed by branched chain-like clusters of the length of 0.6-2.4 nm that correspond to proto-particles or nuclei of nanoparticles. A linear part of the smallest clusters is consisted of two tetrahedra SiO4 with common oxygen atom and oppositely directed vertices. The inter-tetrahedral average angle of Si ‒ O ‒ Si bonds is about 180˚. It is shown that textural porosity of fumed silica powder depends on the initial degree of aggregation of nanoparticles. The average mesopores (1 nm < R < 25 nm) volume is in the rage of 0.26-0.60 cm3∙g-1 for materials pretreated at different temperatures. It is found out that the mean mesopores radius decreases from 34 nm to 10 nm with decreasing average size of silica nanoparticles. The micropores (R < 1 nm) contribution to the total pore volumes is small for all materials (0.003-0.029 cm3∙g-1).


N.P. Bansal, R.H. Doremus, Handbook of glass properties (Elsevier, 2013).

J.H. Konnert, P. d'Antonio, J. Karle, Journal of Non-Crystalline Solids 53(1-2), 135 (1982) (doi: 10.1016/0022-3093(82)90023-0).

G.S. Smith, L.E. Alexander, Acta Crystallographica 16(6), 462 (1963) (doi: 10.1107/S0365110X63001298).

Q. Ma, H. Fang, Z. Liu, S. Wang, Applied Thermal Engineering 131, 786 (2018) (doi: 10.1016/j.applthermaleng.2017.12.062).

D. Hülsenberg, A. Harnisch, A. Bismarck, Microstructuring of glasses (Berlin: Springer) 87, 326 (2008).

J. Fraissard, B. Imelik, J. Chim. Phys. et Phys. Chim. Biol. 59(4), 415 (2002).

G.D. Chukin, A.I. Apretova, Journal of Applied spectroscopy 50(4), 418 (1989).

G.E. Maciel, D.W. Sindorf, J. Amer. Chem. Soc. 102(25), 7606 (1980) (doi: 10.1021/ja00545a056).

E. Lippmaa, M. Maegi, A. Samoson, G. Engelhardt, A.R. Grimmer, J. Amer. Chem. Soc. 102(15), 4889 (1980) (doi: 10.1021/ja00535a008).

V.I. Zarko, V.M. Gun'ko, E. Chibowski, V.V. Dudnik, R. Leboda, Colloids and Surfaces A: Physicochemical and Engineering Aspects 127(1-3), 11 (1997) (doi: 10.1016/S0927-7757(97)00021-6).

S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, second ed. (Academic Press, London, 1982) (doi: 10.1002/bbpc.19820861019).

V.M. Gun'ko, Applied Surface Sci. 307, 444 (2014) (doi: 10.1016/j.apsusc.2014.04.055).

І.F. Мyronyuk, B.М. Yaremchuk, Т.V. Gergel, V.І. Маndzyuk, Physics and Chemistry of Solid State 7(4), 731 (2006).

V.M. Gun’ko, V.I. Zarko, V.V. Turov, O.I. Oranska, E.V. Goncharuk, Y.M. Nychiporuk, E.M. Pakhlov, G.R. Yurchenko, R. Leboda, J. Skubiszewska-Zięba, V.D. Osovskii, Y.G. Ptushinskii, A.G. Derzhypolskyi, D.A. Melenevsky, J.P. Blitz, Powder Technol. 195, 245 (2009) (doi: 10.1016/j.powtec.2009.06.005).

V.M. Gun’ko, V.V. Turov, E.M. Pakhlov, T.V. Krupska, B. Charmas, Appl. Surf. Sci. 459, 171 (2018) (doi: 10.1016/j.apsusc.2018.07.213).

V.M. Gun'ko, Chemistry, Physics and Technology of Surface 10(4), 340 (2019) (doi: 10.15407/hftp10.04.340).

L. Catoire, R. Mével, A. Kunz, P. Roth, Proceedings of the Combustion Institute 33(1), 477 (2011) (doi: 10.1016/j.proci.2010.05.009).

V.D. Khavryuchenko, O.V. Khavryuchenko, V.V. Lisnyak, Critical Reviews in Solid State and Materials Sciences 36(2), 47 (2011) (doi: 10.1080/10408436.2011.572741).

P.E. Lafargue, J.J Gaumet, J.F. Muller, A. Labrosse, J. Mass. Spectrom. 31(6), 623 (1996) (doi: 10.1002/(SICI)1096-9888(199606)31:6<623::AID-JMS333>3.0.CO;2-J).

F. Liebau, Structural chemistry of silicates: structure, bonding, and classification (Springer Science & Business Media, 2012).

V.M. Gun'ko, I.F. Mironyuk, V.I. Zarko, E.F. Voronin, V.V. Turov, E.M. Pakhlov, E.V. Goncharuk, Y.M. Nychiporuk, N.N. Vlasova, P.P. Gorbik, O.A. Mishchuk, A.A. Chuiko, T.V. Kulik, B.B. Palyanytsya, S.V. Pakhovchishin, J. Skubiszewska-Zięba, W. Janusz, A.V. Turov, R. Leboda, Journal of colloid and interface science 289(2), 427 (2005) (doi: 10.1016/j.jcis.2005.05.051).

J.R. Michalski, M.D. Kraft, T. Diedrich, T.G. Sharp, P.R. Christensen, Geophys. Res. Lett. 30(19), PLA2-1–PLA2-4 (1997).

D. Zhang, M. Zhao, R.Q. Zhang, J. Phys. Chem. B. 108(48), 18451 (2004) (doi: 10.1021/jp0469620).

How to Cite
Myronyuk, I. F., Kotsyubynsky, V. O., Dmytrotsa, T. V., Soltys, L. M., & Gun’ko, V. M. (2020). Atomic Structure and Morphology of Fumed Silica. Physics and Chemistry of Solid State, 21(2), 325-331.
Scientific articles

Most read articles by the same author(s)