Thermodynamıc Propertıes of the BiTe and Bi8Te9 Compounds

  • G.S. Hasanova Ganja State University
  • A.I. Aghazade Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences
  • Y.A. Yusibov Ganja State University
  • M.B. Babanly Institute of Catalysis and Inorganic Chemistry, ANAS
Keywords: bismuth tellurides, thermodynamic functions, EMF method, ionic liquid

Abstract

Two-phase alloys Bi8Te9+Bi4Te5 and BiTe+Bi8Te9 were studied by the electromotive forces method (EMF) in the temperature range 300-450 K. From the EMF data, the relative partial molar functions of bismuth in the alloys were calculated. The potential-forming reactions responsible for these partial functions were compiled, the values of the standard thermodynamic functions of formation, and the standard entropies of Bi8Te9 and BiTe compounds were calculated. A comparative analysis of the data for BiTe with the literature data was carried out; for Bi8Te9, the thermodynamic functions were obtained for the first time.

References

J.E. Moore, Nature 464, 194 (2010) (https://doi.org/10.1038/nature08916).

C.L. Kane and J.E. Moore, Physics World 24, 32 (2011) (https://doi.org/10.1088/2058-7058/24/02/36).

D.M. Rowe, Thermoelectrics Handbook: Macro to Nano. CRC Press, Taylor & Francis Group: Boca Raton (FL, USA, 2006).

A.V. Shevelkov, Russ. Chem. Rev, 77, 1 (2008) (https://doi.org/10.1070/RC2008v077n01ABEH003746).

X. Li, C. Lou, X. Li, Y. Zhang, Z. Liu, B. Yin, J. Phys. Appl. Phys, 53, 035102 (2020) (https://doi.org/10.1088/1361-6463/ab4edb).

Q. Wang, X. Wu, K. Wu, Y. Xiang, AIP Advances 9, 025022 (2019) (https://doi.org/10.1063/1.5082725).

J. W. G. Bos, H.W. Zandbergen, M.-H. Lee, N.P. Ong, and R.J. Cava, Physical Review B 75(19), 195203 (2007) (https://doi.org/10.1103/PhysRevB.75.195203).

S.V. Eremeev, G. Landolt, Z.S. Aliyev, M.B. Babanly, I.R. Amiraslanov et al., Nature Commun. 3, 635 (2012) (https://doi.org/10.1038/ncomms1638).

K. Holtgrewe, S.K. Mahatha, P.M. Sheverdyaeva et al., Sci.Rep. 10, 14619 (2020) (https://doi.org/10.1038/s41598-020-71624-4).

C. Hogan, K. Holtgrewe, F. Ronci et al, ACS Nano 13(9), 10481 (2019) (https://doi.org/10.1021/acsnano.9b04377).

C. Lamuta, A. Cupolillo, A. Politano et al., Nano Research 9(4), 1032 (2016) (https://doi.org/10.1007/s12274-016-0995-z).

R. Sultana, P. Neha, R. Goyal et al., J. Mag. Mag. Materials, 428, 213 (2017) (https://doi.org/10.1016/j.jmmm.2016.12.011).

A. Lawal, A. Shaari, R. Ahmed, N.Jarkoni, Phys. B. Cond. Matter. 520, 69 (2017) (https://doi.org/10.1016/j.physb.2017.05.048).

P.H. Le, P.T. Liu, C.W. Luo. et al., J. Alloys Compd., 692, 972 (2017) (https://doi.org/10.1016/j.jallcom.2016.09.109).

L. Viti, D. Coquillat, A. Politano, et al., Nano Letters, 16, 80 (2016) (https://doi.org/10.1021/acs.nanolett.5b02901).

M.B. Babanly, E.V. Chulkov, Z.S. Aliev, et al., Russ. J. Inorg. Chem. 62(13), 1703 (2017) (https://doi.org/10.1134/S0036023617130034).

M.B. Babanly, L.F Mashadiyeva, D.M. Babanly et al., Russ. J. Inorg. Chem, 64(13), 1649 (2019) (https://doi.org/10.1134/S0036023619130035).

G.F. Voronin, Ya.I. Gerasimov, The role of chemical thermodynamics in the development of semiconductor materials science. In the book: Thermodynamics and semiconductor materials science (MIET, Moscow, 1980). In Russian.

Data base of thermal constants of substances. Digital version, Eds.: V.S. Iorish and V.S. Yungman. (2006) (http://www.chem.msu.ru/cgi-bin/tkv.pl).

O. Кubaschewski, C.B. Alcock, P.J. Spenser, Materials Thermo¬chemis¬try (Pergamon Press, Oxford, 1993).

K.C. Mills, Thermodynamic Data for lnorganic Sulphides, Selenides, and Tellurides (Butterworth, London, 1974).

I. Barin, Thermochemical Data of Pure Substances (Third Edition, VCH, 2008).

M. Hansen, K. Anderko, Structures of binary alloys. Vol.1.2. (Metallurgizdat, Moscow, 1962).

N.Kh. Abrikosov, V.F. Bankina, L.V. Poretskaya, Semiconductor chalcogenides and alloys based on them (Nauka, Moscow, 1975). In Russian.

Phase diagrams of binary metal systems. Handbook. Ed. R.P. Lyakishev. M.: Mashinostroeniye, 1 (1996); 2(1997); 3 (2001).

Binary alloy phase diagrams, Ed. T.B. Massalski, second edition. ASM International (Materials Park, Ohio, 1990).

C. Mao, M. Tan, L. Zhang, D. Wu, W. Bai, L. Iu, Calphad 60, 81 (2018) (https://doi.org/10.1016/j.calphad.2018.08.005).

W. Gierlotka, Calphad 63, 6 (2018) (https://doi.org/10.1016/j.calphad.2018.08.005).

G.S. Hasanova, A.I. Agazade, E.N. Orujlu, M.B. Babanly, 5th International Turkic World Conference on Chemical Sciences and Technologies (ITWCCST 2019), 110 (2019).

G.S. Hasanova, G.B. Dashdiyeva, Y.A.Yusibov, M.B.Babanly, Chem. Problems 3, 123 (2020).

K. Wagner, Thermodynamics of alloys (Metallurgizdat, 1957).

M.B. Babanly, Y.A. Yusibov, N.B. Babanly, The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary Copper and Silver Chalcogenides. Electromotive force and measurement in several systems. Ed.S.Kara. Intechweb.Org, 57 (2011).

A.G. Morachevskij, G.F. Voronin, V.A. Gejderikh, I.B. Kuczenok, Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem ICzK (Akademkniga, 2003). In Russian.

V. Vassiliev, W. Gong, Electrochemical Cells with the Liquid Electrolyte in the Study of Semiconductor, Metallic and Oxide Systems. In. Electrochemical Cells – New Advances in Fundamental Researches and Applications. Ed.Yan Shao, IntechOpen, 71-102 (https://doi.org/10.5772/39007).

D.M. Babanly, G.M. Velieva, S.Z. Imamaliyeva, M.B. Babanly, Russ. J. Phys. Chem. A, 91(7), 1170 (2017) (https://doi.org/10.1134/S0036024417070044).

S.Z.Imamaliyeva, D.M. Babanly, T.M. Gasanly, F.M.Sadygov, M.B.Babanly, Russ. J. Phys. Chem.A, 92(11), 2111 (2018). (https://doi.org/10.1134/S0036024418110158).

S.Z. Imamaliyeva, I.F. Mehdiyeva, D.B. Taghiyev, M.B. Babanly, Physics and chemistry of solid state 21(2), 312 (2020) (https://doi.org/10.15330/pcss.21.2.312-318).

Z.S. Aliev, S.S. Musayeva, S.Z. Imamaliyeva, M.B. Babanlı, J. Therm. Anal. Calorim. 133(2), 1115 (2018) (https://doi.org/10.1007/s10973-017-6812-4).

M.V. Voronin, E.G. Osadchii, Russ. J. Electrochem. 47(4), 446 (2011) (https://doi.org/10.1134/S1023193511040203).

E. Kuzmina, Е.V. Karaseva, N.V. Chudova, A.A. Melnikova, V.S. Klosnitsin, Russ. J. Electrochem 55(10), 1215 (2019) (10.1134/S0424857019080085).

Z.S. Aliev, S.S. Musayeva, S.Z. Imamaliyeva, M.B. Babanlı, J. Therm. Anal. Calorim. 133(2), 1115 (2018) (https://doi.org/10.1007/s10973-017-6812-4).

S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Tagiyev, M.B. Babanly, Thermoch. Acta 679, 178319 (2019) (https://doi.org/10.1016/j.tca.2019.178319).

C. Brigouleix, M. Anouti, J. Jacquemin, M. Caillon-Caravanier, H. Galiano, D. Lemordant J. Phys. Chem. B 114(5), 1757 (2010) (https://doi.org/10.1021/jp906917v).

C-C. Liu, J.C. Angus, J. Electrochem. Soc. 116(8), 1054 (1969).

Published
2020-12-31
How to Cite
HasanovaG., AghazadeA., YusibovY., & BabanlyM. (2020). Thermodynamıc Propertıes of the BiTe and Bi8Te9 Compounds. Physics and Chemistry of Solid State, 21(4), 714-719. https://doi.org/10.15330/pcss.21.4.714-719
Section
Scientific articles