Experimental investigation of the solid phase equilibria at 300 K in the SnBi2Te4-PbBi2Te4-Bi2Te3 system

  • A.I. Aghazade M. Nagiyev Institute of Catalysis and Inorganic Chemistry, Baku, Azerbaijan
  • E.N. Orujlu Azerbaijan State Oil and Industry University, Baku, Azerbaijan 
  • Z.E. Salimov Azerbaijan State Oil and Industry University, Baku, Azerbaijan 
  • A.N. Mammadov M. Nagiyev Institute of Catalysis and Inorganic Chemistry, Baku, Azerbaijan; Azerbaijan Technical University, Baku, Azerbaijan
  • M.B. Babanly M. Nagiyev Institute of Catalysis and Inorganic Chemistry, Baku, Azerbaijan
Keywords: SnBi2Te4-PbBi2Te4-Bi2Te3 system, SnBi6Te10–PbBi6Te10 section, topological insulators, thermoelectric materials, solid phase equilibria


The phase equilibria of the SnBi2Te4-PbBi2Te4-Bi2Te3 system were experimentally studied using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. According to the experimental results, the isothermal section of the system at 300 K were constructed and 4 single-phase and 3 two-phase regions were identified. It was shown that along with previously confirmed SnBi2Te4–PbBi2Te4 and SnBi4Te7–PbBi4Te7 sections, SnBi6Te10–PbBi6Te10 section forms continuous series of solid solutions with a tetradymite-type layered structure. Lattice parameters of solid solutions were determined by full-profile Rietveld refinements and results show that both a and c parameters increase linearly with the Pb concentration according to Vegard's law. This study can help elucidate the phase equilibria of the SnTe-PbTe-Bi2Te3 pseudo-ternary system which provides important information for the design of new tetradymite-type layered phases with topological insulator and thermoelectric properties.


N. Virk, O. Yazyev, Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures, Sci Rep, 6(1), 20220 (2016); https://doi.org/10.1038/srep20220.

L.D. Ivanova, I.Y. Nikhezina, Y.V. Granatkina, V.A. Dudarev, S. A. Kichik, A.A. Mel’nikov, Thermoelements from antimony- and bismuth-chalcogenide alloys, Semiconductors, 51(8), 986 (2017); https://doi.org/10.1134/S1063782617080140.

G.S. Hegde, A.N. Prabhu, A Review on Doped/Composite Bismuth Chalcogenide Compounds for Thermoelectric Device Applications: Various Synthesis Techniques and Challenges. J. Electron. Mater., 51, 2014 (2022); https://doi.org/10.1007/s11664-022-09513-x.

R. Golovchak, J. Plummer, A. Kovalskiy, Y. Holovchak, T. Ignatova, A. Trofe, B. Mahlovanyi, J. Cebulski, P. Krzeminski, Y. Shpotyuk, C. Boussard-Pledel, B. Bureau, Phase-change materials based on amorphous equichalcogenides, Sci Rep, 13, 2881 (2023); https://doi.org/10.1038/s41598-023-30160-7.

W-C. Lin, Y-C. Yang, H-Y. Tuan, Ternary chalcogenide anodes for high-performance potassium-ion batteries and hybrid capacitors via composition-mediated bond softening and intermediate phase, Energy Storage Materials, 51, 38 (2022); https://doi.org/10.1016/j.ensm.2022.06.010.

H.J. Goldsmid, R.W. Douglas. The use of semiconductors in thermoelectric refrigeration, British Journal of Applied Physics, 5, 386 (1954).

A.V. Shevelkov. Chemical aspects of the design of thermoelectric materials, Russian Chemical Reviews, 77(1), 1 (2008); https://doi.org/ 10.1070/RC2008v077n01ABEH003746.

G. Tan, M. Ohta, M. G. Kanatzidis. Thermoelectric power generation: from new materials to devices, Philosophical Transactions of the Royal Society B, 377(2152), 20180450 (2019); https://doi.org/10.1098/rsta.2018.0450.

X. L. Qi, S. C. Zhang. Topological insulators and superconductors, Reviews of Modern Physics, 83, 1057 (2011); https://doi.org/10.1103/RevModPhys.83.1057.

L. Hu, H. Gao, X. Liu H. Xie, J. Shen, T. Zhu, X.Zhaoa, Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects, Journal of Materials Chemistry. 22, 16484 (2012); https://doi.org/10.1039/C2JM32916F.

H. Zhang, C-X. Liu, X-L. Qi, X. Dai, Z. Fang, S-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature Phys, 5, 438 (2009); https://doi.org/10.1038/nphys1270.

Y.L. Chen, J.G. Analytis, J-H. Chu, Z.K. Liu, S-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z-X. Shen, Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3, Science, 325, 178 (2009); https://doi.org/10.1126/science.1173034.

L. Zhao, H. Deng, I. M. Begliarbekov, Z. Chen, E. Andrade, E. Rosenthal, A. Pasupathy, V. Oganesyan, L. Krusin-Elbaum, Emergent surface superconductivity in the topological insulator Sb2Te3, Nat Commun, 6, 8279 (2015); https://doi.org/10.1038/ncomms9279.

C. Lamuta, A. Cupolillo, A. Politano, Z.S. Aliev, M.B. Babanly, E.V. Chulkov, L. Pagnotta, Indentation fracture toughness of single-crystal Bi2Te3 topological insulators, Nano Research, 9, 1032 (2016); https://doi.org/10.1007/s12274-016-0995-z.

R. Flammini, S. Colonna, C. Hogan, S.K. Mahatha, M. Papagno, A. Barla, P.M. Sheverdyaeva, P. Moras, Z.S. Aliev, M.B. Babanly, E.V. Chulkov, C. Carbone, F. Ronci, Evidence of β-antimonene at the Sb/Bi2Se3 interface. Nanotechnology, 29(6), 065704 (2018); https://doi.org/10.1088/1361-6528/aaa2c4.

A. Politano, M. Caputo, S. Nappini, F. Bondino, E. Magnano, Z.S. Aliev, M.B. Babanly, A. Goldoni, G. Chiarello, E. V. Chulkov, Exploring the Surface Chemical Reactivity of Single Crystals of Binary and Ternary Bismuth Chalcogenides, J. Phys. Chem. C, 118(37), 21517 (2014); https://doi.org/10.1021/jp506444f.

L-L. Wang, Highly tunable band inversion in AB2X4 (A=Ge, Sn, Pb; B=As, Sb, Bi; X=Se, Te) compounds, Phys. Rev. Materials, 6, 094201 (2022); https://doi.org/10.1103/PhysRevMaterials.6.094201.

A. Saxena, N.K. Karn, M.M. Sharma, V.P.S. Awana, Detailed structural and topological analysis of SnBi2Te4 single crystal, J. Phys. Chem. Solids, 174, 111169 (2022); https://doi.org/10.1016/j.jpcs.2022.111169.

M.G. Vergniory, T.V. Menshchikova, S.V. Eremeev, E.V. Chulkov, Bulk and surface electronic structure of SnBi4Te7 topological insulator, Applied Surface Science, 267, 146 (2013); https://doi.org/10.1016/j.apsusc.2012.08.073.

M. Papagno, S. V. Eremeev, J. Fujii, Z. S. Aliev, M. B. Babanly, S. Mahatha, I. Vobornik, N. T. Mamedov, D. Pacile, E. V. Chulkov, Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi6Te10, ACS Nano, 10(3), 3518 (2016); https://doi.org/10.1021/acsnano.5b07750.

R. Li, G. Liu, Q. Jing, X. Wang, H. Wang, J. Zhang, Y. Ma, Pressure-induced superconductivity and structural transitions in topological insulator SnBi2Te4, J.Alloys Compd, 900, 163371 (2022); https://doi.org/10.1016/j.jallcom.2021.163371.

K. Konstantinou, F.C. Mocanu, J. Akola, Electron localization in recrystallized models of the Ge2Sb2Te5 phase-change memory material, Phys. Rev. B, 106, 184103 (2022); https://doi.org/10.1103/PhysRevB.106.184103.

M.Nurmamat, K.Okamoto, S. Zhu, T.V. Menshchikova, I.P. Rusinov, V. O. Korostelev, K. Miyamoto, T. Okuda, T. Miyashita, X. Wang, Y. Ishida, K. Sumida, E.F. Schwier, M. Ye, Z.S. Aliev, M.B. Babanly, I.R. Amiraslanov, E.V. Chulkov, K.A. Kokh, O.E. Tereshchenko, K. Shimada, S. Shin, A. Kimura, Topologically Nontrivial Phase-Change Compound GeSb2Te4. ACS Nano, 14(7), 9059 (2020); https://doi.org/10.1021/acsnano.0c04145.

M.B. Babanly, E.V. Chulkov, Z.S. Aliev, A.V. Shevelkov, I.R. Amiraslanov, Phase diagrams in materials science of topological insulators based on metal chalcogenides, Russ. J. Inorg. Chem., 62, 1703 (2017); https://doi.org/10.1134/S0036023617130034.

S.Z. Imamaliyeva, D.M. Babanly, D.B. Tagiev, M.B. Babanly, Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the Tl5Te3 Structure: A Review, Russ. J. Inorg. Chem., 63, 1704 (2018); https://doi.org/10.1134/S0036023618130041.

E.N. Orujlu, Z.S. Aliev, M.B. Babanly, The phase diagram of the MnTe–SnTe–Sb2Te3 ternary system and synthesis of the iso- and aliovalent cation-substituted solid solutions, Calphad, 76, 102398 (2022); https://doi.org/10.1016/j.calphad.2022.102398.

A.I. Aghazade, Phase relations and characterization of solid solutions in the SnBi2Te4–PbBi2Te4 and SnBi4Te7–PbBi4Te7 systems, J. Azerb. Chem., 3, 75 (2022); https://doi.org/10.32737/0005-2531-2020-4-53-59.

E.N. Orujlu, Phase relations and characterization of solid solutions in the SnSb2Te4-MnSb2Te4 system, New Materials, Compounds and Applications, 4(1), 38 (2020).

Y. Hattori, Y. Tokumoto, K. Kimoto, K. Edagawa, Evidences of inner Se ordering in topological insulator PbBi2Te4-PbBi2Se4-PbSb2Se4 solid solutions, Sci Rep, 10, 7957 (2020); https://doi.org/10.1038/s41598-020-64742-6.

K. Adouby, A. Abba Touré, G. Kra, J. Olivier-Fourcade, J-C. Jumas, C. Perez Vicente, Phase diagram and local environment of Sn and Te: SnTe-Bi and SnTe-Bi2Te3 systems, Comptes Rendus de l’Académie Des Sciences - Series IIC - Chemistry, 3(1), 51 (2000); https://doi.org/0.1016/s1387-1609(00)00105-5.

Cn. Chiu, Cm. Hsu, Sw. Chen, Hj. Wu, Phase Equilibria of the Sn-Bi-Te Ternary System, J. Electron. Mater., 41, 22 (2012); https://doi.org/10.1007/s11664-011-1730-x.

O.G. Karpinskii, L.E. Shelimova, M.A. Kretova, E.S. Avilov, V.S. Zemskov, X-ray Diffraction Study of Mixed-Layer Compounds in the Pseudobinary System SnTe–Bi2Te3, Inorganic Materials, 39, 240 (2003); https://doi.org/10.1023/A:1022669323255.

D. Huang, D. Xia, T. Ye, T. Fujita, New experimental studies on the phase relationship of the Bi–Pb–Te system, Materials & Design, 224, 111384 (2022); https://doi.org/10.1016/j.matdes.2022.111384.

L.E. Shelimova, O.G. Karpinskii, P.P. Konstantinov, E. S. Avilov, M.A. Kretova, I.Yu. Nikhezina,V.S. Zemskov, Thermoelectric materials based on intermediate phases in the systems formed by chalcogenides of lead and bismuth, Inorg. Mater. Appl. Res., 1, 83 (2010); https://doi.org/10.1134/S2075113310020024.

B.A. Kuropatwa, H. Kleinke, Thermoelectric Properties of Stoichiometric Compounds in the (SnTe)x(Bi2Te3)y System, Z. anorg. allg. Chem., 638(15) 2640 (2012); https://doi.org/10.1002/zaac.201200284.

O.G. Karpinskii, L.E. Shelimova, E.S. Avilov, M.A. Kretova, V.S. Zemskov, X-ray Diffraction Study of Mixed-Layer Compounds in the PbTe–Bi2Te3 System, Inorg. Mater., 38, 17 (2002); https://doi.org/10.1023/A:1013639108297.

L.E.Shelimova, O.G. Karpinskii, T.E. Svechnikova, E.S. Avilov, M.A. Kretova, V.S. Zemskov, Synthesis and structure of layered compounds in the PbTe−Bi2Te3 and PbTe−Sb2Te3 systems, Inorg. Mater., 40, 1264 (2004); https://doi.org/10.1007/s10789-005-0007-2.

A.E. Seidzade, E.N. Orujlu, Z.S. Aliev, M.B. Babanly, New investigation of phase equilibria in the SnTe-Bi2Te3 system, 10th Rostocker International Conference: “Thermophysical Properties for Technical Thermodynamics” (Rostock, Germany, 2021), P.134.

I.M. Gojayeva, V.I. Babanly, A.I. Aghazade, E.N. Orujlu, Experimental reinvestigation of the PbTe–Bi2Te3 pseudo-binary system, J. Azerb. Chem., 1(2), 47 (2022); https://doi.org/10.32737/0005-2531-2022-2-47-53.

L. Pan, J. Li, D. Berardan, N. Dragoe, Transport properties of the SnBi2Te4–PbBi2Te4 solid solution, J. Solid State Chem., 225, 168 (2015); https://doi.org/10.1016/j.jssc.2014.12.016.

How to Cite
AghazadeA., OrujluE., SalimovZ., MammadovA., & BabanlyM. (2023). Experimental investigation of the solid phase equilibria at 300 K in the SnBi2Te4-PbBi2Te4-Bi2Te3 system . Physics and Chemistry of Solid State, 24(3), 453-459. https://doi.org/10.15330/pcss.24.3.453-459
Scientific articles (Chemistry)