Investigation of the conditions of synthesis of metal and chalcopyrite films from the degradation products of electrodes of an overstressed nanosecond discharge in argon and air
DOI:
https://doi.org/10.15330/pcss.21.4.669-679Keywords:
Chalcopyrite Films, Discharge, Argon, ElectrodesAbstract
The characteristics of an overstressed bipolar discharge with a duration of 100-150 ns in argon and air, which was ignited between copper electrodes in argon, and also between an aluminum electrode and a chalcopyrite (CuInSe2) electrode in air, are presented. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, the vapor of copper, aluminum, and vapor of ternary chalcopyrite are introduced into the interelectrode gap. This creates the prerequisites for the synthesis of thin copper films and the synthesis of films based on quaternary chalcopyrite - CuAlInSe2, which can be deposited on a quartz plate installed near the center of the discharge gap.
The optical characteristics of the plasma, as well as voltage pulses across the discharge gap of d = 1–2 mm, current pulses, and pulsed energy contributions to the discharge, have been investigated using emission spectroscopy with a high time resolution. The plasma emission spectra were thoroughly studied, which made it possible to establish the main decay products of the chalcopyrite molecule and the energy states of atoms and singly charged ions of aluminum, copper, and indium, which are formed in the discharge.
References
G.G. Savenkov, S.A. Rashkovsky, V.A. Morozov, A.A. Lukin and others, ZhTF 87(9), 1327 (2017) (https://doi.org/10.21883/JTF.2017.09.44906.2112).
A.K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, V. V. Danilo, M.Yu. Sichka, I.V. Shevera, Amerikan Journal of Mechanical and Materials Engineering 2(1), 8 (2018) (https://doi.org/10.24966/BRB-0019/100005).
A.Shuaibov, A. Minya, A. Malinina, A. Malinin, R. Golomd, I. Shevera, Advances in Natural Sciences: Nanoscience and Nanotechnology 9, 035018 (2018).
О.К. Shuaibov, A.Y. Minya, M.P. Chuchman, A.O. Malinin, V.V. Danilo, Z.T. Homoki, Ukrainian Physical Journal 63(9), 790 (2018).
О.К. Shuaibov, O.Y. Minya, Z.T. Gomoki, VV Danilo Windowless, spot, ultraviolet lamp. Utility model patent. U 2016 04596, 10.11.2016, Bull. № 21.
T.E. Itina, A. Voloshko, Appl. Phys. B. Laser and Optics (2013) (https://doi.org/10.1007/s00340-013-5490-6).
G.A. Mesyats, Usp. Fizich. Nauk. 165(6), 601 (1995).
J. Lopez-Garcia, M. Placidi, X. Fontane, V. Izguierdo-Roca, M. Espindola et all, Solar Energy Materials & Solar Cells 132, 245 (2015).
B. Farmanfarmas, M.R. Rashidian Vaziri, F. Khadzhiismailbaizhi, Quantum Electronics 44(11), 1029 (2014).
A.K. Shuaibov, G.E. Laslov, and Ya.Ya. Kozak, Optics and Spectroscopy 116(4), 552 (2014).
А.К. Shuaibov, G.E. Laslov, А.I. Minya, and Z.T. Gomoki, Technical Physics Letters 40(11), 963 (2014).
A.Kh. Abduev, A.Sh. Asvarov, A.K. Akhmetov, R.M. Emirov, V.V. Belyaev, Technical Physics Letters 43(22), 40 (2017).
V.G. Melnikov, Protection of metals 41(2), 168 (2005).
Kh.V. Allakhverdieva, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol [Russ. J. Chem & Chem.Tech. 63(10), 71 (2020).
L.F. Abaeva, V.I. Shumsky, E.N. Petritskaya, D.A. Rogatkin, P.N. Lyubchenko, Almanac of Clinical Medicine 22, 10 (2010).
E.A. Farberova, A.Yu. Katysheva, S.A. Smirnov, E.A. Tingaeva, A.G. Starostin, Izvestiya vuzov. Chemistry and chemical technology 63(3), 46 (2020).
О.К. Shuaibov, А.О. Malinina, O.M. Malinin, New gas - discharge methods for obtaining selective ultraviolet and visible radiation and synthesis of nanostructures of transition metal oxides. Monograph (Uzhhorod National University Publishing House "Hoverla", Uzhhorod, 2019).
A.K. Shuaibov, A.I. Minya, A.A. Маlinina, R.V. Gritsak, A.N. Маlinin, Ukr. J. Phys. 65(5), 400 (2020).
A. Shuaibov, A. Minya, A. Malinina, A. Malinin, Z. Gomoki, Highlights in BioScience 3, (2020). (Article ID 20211. (https://doi.org/10.36462/H.BioSci.20211).
Runaway electrons preionized diffuse discharge. Ed. by V.F. Tarasenko (Nova Science Publishers Inc., New York, 2014).
A.R. Striganov, N. Sventitsky, Tables of spectral lines of neutral and ionized atoms (Atomizdat, Moscow, 1966).
NIST Atomic Spectra Database Lines Form (https:// physics.nist.gov/ PhysRefData/ASD/lines_form.html).
R. Pierce, A. Gaydon, Identification of molecular spectra (Iz-vo IL, Moscow, 1949). (https://doi.org/10.15826/analitika.2016.20.1.005).
V.S. Kortov, A.E. Ermakov, A.F. Zatsepin, M.A. White, S.V. Nikiforov et al., Solid State Physics 50(5), 916 (2008).
I.V. Gassenkova, N.I. Mukhurov, Yasin Mokhsin Vakhioh, Reports of BSUIR 2(96), 114 (2016).
I.E. Kacher, A.K. Shuaibov, M.Yu. Regan, A.I. Dashchenko, Thermal physics of high temperatures 40(6), 880 (2002).
D.V. Beloplotov, M.I. Lomaev, D.A. Sorokin, V.F. Tarasenko, Journal of technical physics 88(6), 819 (2018). (https://doi.org/10.21883/JTF.2018.06.46032.2465).
R.M. van der Horst, T. Verreycken, van E.M. Veldhuizen, and P.J. Bruggerman, J.Phys.D: Appl. Phys. 45, 345201 (2012).
D.V. Beloplotov, V.I. Lomaev, D.A. Sorokin, V.F. Tarasenko, Journal of Physics : Conference Series 652, 012012 (2015) (https://doi.org/10.1088/1742-6596/652/1/012012).
M. Lomaev, D. Beloplotov, D. Sorokin, V. Tarasenko, The radiative properties of plasma of pulse-periodic discharge initiated wich runaway electrons. 32nd ICPIC. July 26-31 (Jasi, Romania, 2015). (https://doi.org/10.15407/ujpe62.07.0594).
D. Levko, and Laxminarayan L.Raja, Physics of Plasmas 22, 123518 (2016) (https://doi.org/10.1063/1.4939022).
A.N. Gomonai, Journal of Applied Spectroscopy 82(1), 17 (2015).
G.F. Novikov, M.V. Gapanovich, Successes in physical sciences 187(2), 173 (2017).
V.M. Holovey, K.P. Popovych, M.V. Prymak, M.M. Birov, V.M. Krasilinets, V.I. Sidey, Physica B 450, 34 (2014).
V.M. Krasylynets, O. K. Shuaibov, I.V. Shevera, Z.T. Gomoki, M.M. Chavarga, A.M. Solomon, V. I. Mikla, Uzhhorod University Scientific Herald Series Physics. 46, 84 (2019) (https://doi.org/10.24144/2415-8038.2019.46.84-91).