Study of conditions of gas- discharge synthesis of Zinc oxide nanostructures under automatic UV-irradiation of the substrate by plasma
DOI:
https://doi.org/10.15330/pcss.22.4.717-723Keywords:
intense nanosecond discharge, oxygen, zinc, radiation spectrum, plasmaAbstract
The spectroscopic characteristics of a bipolar, overstressed discharge of nanosecond duration between zinc electrodes in oxygen at a pressure p(O2) = 13.3 kPa are presented. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, zinc vapor is introduced into the discharge gap. This creates the prerequisites for the formation of zinc oxide molecules and clusters in the plasma and the synthesis of thin island zinc oxide films, which can be deposited on a dielectric substrate installed near the center of the discharge gap. The spectral characteristics of the discharge were investigated from the central part of the discharge gap 2 mm in size. The main excited components of the plasma of a vapor-gas mixture based on zinc and oxygen were established at high values of the parameter E / N (where E is the electric field strength; N is the total concentration of particles in the plasma), which, when deposited outside the discharge plasma, can lead to the formation of fine nanostructured films based on zinc oxide.
References
D.Z. Pai, D.L. Lacoste, C.O. Laux, Plasma Souces Sci. Technol. 19, 065015 (2010) https://doi.org/10.1088/0963-0252/19/6/065015.
[O.K. Shuaibov, A.A. Malinina, A.N. Malinin, New gas-discharge methods for obtaining selective ultraviolet and visible radiation and synthesis of nanostructures of transition metal oxides. Monograph (Publishing house UzhNU "Hoverla" Uzhhorod 2019).
V.F. Tarasenko, Runaway electrons preionized diffuse discharge (Nova Science Publishers Inc., New York, 2014).
H.A. Mesiats, M.Y. Yalandyn, Advances in Physical Sciences 189(7), 747 (2019). https://doi.org/10.3367/UFNr.2018.06.038354.
E.Kh. Bakst, V.F. Tarasenko, Yu. V. Shut’ko, M.V. Erofeev, Quantum Electronics 42(2), 153 (2012) https://doi.org/10.1070/QE2012v042n02ABEH014795.
A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, A.A. Malinina, A.N. Malinin, Surface Engineering and Applied Electrochemistry 56(4), 510 (2020) https://doi.org/10.3103/S106837552004016X.
G.A. Mesyats, Usp. Fizich. Nauk. 165(6) 601 (1995) https://doi.org/10.1070/PU1995v038n06ABEH0000.
[ T.E. Itina, A. Voloshko, Appl. Phys. B. 113, 473 (2013) https://doi.org/10. 1007/s00340-o13-5490-6.
A. Shuaibov, A. Minya, A. Malinina, A. Malinin, R. Golomd, I. Shevera, Z. Gomoki, V. Danilo, Advances in Natural Sciences: Nanoscience and Nanotechnology 9, 035018 (2018) https://doi.org/10.1088/2043-6254.
A.K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, V. V. Danilo, M.Yu. Sichka, I.V. Shevera, Amerikan Journal of Mechanical and Materials Engineering 2(1), 8 (2018) https://doi.org/10.11648.j.ajmme.20180201.12.
A.Kh. Abduev, A.Sh. Asvarov, A.K. Akhmetov, R.M. Эmyrov, V.V. Beliaev, Technical Physics Letters 43(22), 40 (2017) https://doi.org/10.21883/PJTF.2017.22.45259.16874.
V.V. Danilo, O. Y. Minya, O.K. Shuaibov, I.V. Shevera, Z.T. Gomoki, M.V. Dudich, Scientific herald of Uzhhorod University. Physics 42, 128 (2017) http://nbuv.gov.ua/UJRN/Nvuufiz_2017_42_17.
[OK. Shuaibov, A.I. Minya, M.P. Chuchman, A.A. Malinin, V.V. Daniil, Z.T. Gomoku, Ukrainian Journal of Physics 63 (9), 790 (2018) https://doi.org/10.15407/ujpe63.9.790.
A.K. Shuaibov, A.Y. Minya, Z.T. Gomoki, A.A. Malinina, A.N. Malinin, V.V. Danilo, Yu.Yu. Bilak, Ya.Ch. Kolozhvari HSOA Jounal of Biotech Research & Biochemistry 3(1), 100005 (2020) https://doi.org/10.24966/BRB-0019/100005.
G. Palani, K. Kannan, D. Radhika, P. Vijayakumar, K. Pakiyaraj, Physics and Chemistry of Solid State 21(4), 571 (2020) https://doi.org/10.15330/pcss.21.4.571-583.
O.K. Shuaibov, O. I. Nalima, R.V. Hrytsak, A.A. Malinina, I.V. Shevera, M.I. Vatrala, Z.T. Gomoki, Physics and Chemistry of Solids 21 (4), 669 (2020) https://doi.org/10.15330/pcss.21.4.669-679.
A.R. Striganov, N.S. Sventitsky, Tables of Spectral Lines of Neutral and Ionized Atoms (Atomizdat, Moscow, 1966).
NIST Atomic Spectra Database Lines Form https:// physics.nist.gov/ PhysRefData/ASD/lines_form.html.
S.I. Maksimov, A.V. Kretinina, N.S. Fomina, L.N. Gall, Scientific Instrumentation 25 (1), 36 (2015).
Yu. M. Smirnov, Optics and Spectroscopy 104(2), 159 (2008) https://doi.org/10.1134/S0030400X08020021.
R. Shyker, Y. Binur, A. Szokem Phys. Rev.A. 12(2), 512 (1975) https://doi.org/10.1103/PhysRevA.12.515.
A.N. Gomonai, Journal of Applied Spectroscopy 82(1), 17 (2015) https://doi.org/10.1007/s10812-015-0057-4.
D. Levko, L.L. Raja, Physics of Plasmas 22, 123518 (2016) https://doi.org/10.1063/1.4939022.