Structural Properties of Graphene Oxide Materials Synthesized Accordinglyto Hummers, Tour and Modified Methods: XRD and Raman Study

Authors

  • V.O. Kotsyubynsky Vasyl Stefanyk Precarpathian National University
  • V.M. Boychuk Vasyl Stefanyk Precarpathian National University
  • I.M. Budzuliak Vasyl Stefanyk Precarpathian National University
  • B.I. Rachiy Vasyl Stefanyk Precarpathian National University
  • R.I. Zapukhlyak Vasyl Stefanyk Precarpathian National University
  • M.A. Hodlevska Vasyl Stefanyk Precarpathian National University
  • A.I. Kachmar Vasyl Stefanyk Precarpathian National University
  • O.R. Bilogubka Ivano-Frankivsk Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine
  • A.A. Malakhov Vasyl Stefanyk Precarpathian National University

DOI:

https://doi.org/10.15330/pcss.22.1.31-38

Keywords:

graphene oxide, reduced graphene oxide, structure, XRD, Raman spectroscopy

Abstract

The aim of this paper is the comparison of structural, morphological and electrical properties of thermally extended graphite synthesized by chemical oxidation of graphite with sulfur of nitric acids at all other same conditions. Thermal treatments of graphite intercalation compounds were performed at a temperature of 600°C on the air for 10 min but additional annealing in temperature range of 100-600oC for 1 hour was done. The obtained materials were characterized by XRD, Raman spectroscopy and impedance spectroscopy. The evolution of structural ordering of thermally extended graphite samples at increasing of annealing temperature was traced. It was determined that the additional annealing allows to control the electrical conductivity and structural disordering degree of extended graphite samples that is useful for preparation of efficient current collectors for electrochemical capacitors.

References

G. Hong, S. Diao, A. L. Antaris, H. Dai, Chemical reviews 115(19), 10816-10906 (2015) (doi: 10.1021/acs.chemrev.5b00008).

L. Dai, D. W. Chang, J. B. Baek, W. Lu, Small 8(8), 1130-1166 (2012) (doi:10.1002/smll.201101594).

V. Boychuk, V. Kotsyubynsky, B. Rachiy, K. Bandura, A. Hrubiak, S. Fedorchenko, Materials Today: Proceedings 6, 106-115 (2019) ( doi:10.1016/j.matpr.2018.10.082).

V. M. Boychuk, V. O. Kotsyubunsky, K. V. Bandura, B. I. Rachii, I. P. Yaremiy, S. V. Fedorchenko, Molecular Crystals and Liquid Crystals 673(1), 137-148 (2018) (doi:10.1080/15421406.2019.1578503).

W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 80(6),1339 (1958) (doi: 10.1021/ja01539a017).

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS nano 4(8), 4806-4814 (2010) ( doi:10.1021/nn1006368).

V. M. Boychuk, V. O. Kotsyubynsky, K. V. Bandura, I. P. Yaremiy, S. V. Fedorchenko, Journal of nanoscience and nanotechnology 19(11), 7320-7329 (2019) (doi:10.1166/jnn.2019.16712).

H.-K. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M.-H. Park, K. H. An, I. J. Kim, C.-W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, J. Am. Chem. Soc 130(4), 1362-1366 (2008) (doi:10.1021/ja076473o).

A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B. 110(45), 22328–22338 (2006) (doi:10.1021/jp0641132).

S. Pei, H.-M. Cheng, Carbon 50(9), 3210–3228 (2011) (doi:10.1016/j.carbon.2011.11.010).

H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett 287, 53–56 (1998) (doi:10.1016/s0009-2614(98)00144-4).

W. Gao, L. B. Alemany, L. Ci, P. M. Ajayan, Nat. Chem 1, 403–408 (2009) (doi:10.1038/nchem.281).

G. I. Titelman, V. Gelman, S. Bron, R. L. Khalén, Y. Cohen, H. Bianco-Peled, Carbon 43(3), 641-649 (2005) (doi:10.1016/j.carbon.2004.10.035).

S. Kashyap, S. Mishra, S. K. Behera, Journal of Nanoparticles, (2014). (doi: 10.1155/2014/640281).

C. K. Chua, M. Pumera, Chemical Society Reviews 43(1), 291-312 (2014) (doi:10.1039/c3cs60303b).

M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace, M. Chhowalla, K. Cho, Y. Chabal, The Journal of Physical Chemistry C 115(40), 19761-19781 (2011) ( doi:10.1021/jp2052618).

W. Chen, L. Yan, P. R. Bangal, Carbon 48(4), 1146-1152 (2010) (doi:10.1016/j.carbon.2009.11.037).

O. C. Compton, S. T. Nguyen Small 6, 711–723 (2010).

A. I Kachmar, V. M. Boichuk, I. M. Budzulyak, V. O. Kotsyubynsky, B. I. Rachiy, R. P. Lisovskiy. Fullerenes, Nanotubes and Carbon Nanostructures 27(9), 669-676 (2019) (doi : 10.1080/1536383X.2019.1618840).

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaa, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, R. S. Ruof, Сarbon 45(7), 1558-1565 (2007) (doi :10.1016/j.carbon.2007.02.034).

A. Mathka, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan A. L. M. Reddy, P. M. Ajayan, Journal of physical chemistry letters 3(8), 986-991 (2012) ( doi:10.1021/jz300096t).

S. Claramunt, A. Varea, D. López-Díaz, M. M. Velázquez, A.Cornet, A. Cirera, Journal of Physical Chemistry C 119(18), 10123-10129 (2015) (doi:10.1021/acs.jpcc.5b01590).

M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, R. Saito, Physical chemistry chemical physics 9(11), 1276-1290 (2007) ( doi:10.1039/b613962k).

A. C. Ferrari, D. M. Basko Nat. Nanotechnol 8, 235–246, (2013) (doi:10.1038/nnano.2013.46).

L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Physics reports 473(5-6), 51-87 (2009) (doi:10.1016/j.physrep.2009.02.003).

Downloads

Published

2021-02-09

How to Cite

Kotsyubynsky, V., Boychuk, V., Budzuliak, I., Rachiy, B., Zapukhlyak, R., Hodlevska, M., … Malakhov , A. (2021). Structural Properties of Graphene Oxide Materials Synthesized Accordinglyto Hummers, Tour and Modified Methods: XRD and Raman Study. Physics and Chemistry of Solid State, 22(1), 31–38. https://doi.org/10.15330/pcss.22.1.31-38

Issue

Section

Scientific articles

Most read articles by the same author(s)

<< < 1 2 3 4