Mechanisms of charge accumulation of the electrochemical system LaMnO3 / AC

  • H.M. Kolkovska Vasyl Stefanyk Precarpathian National University
  • B.I. Rachiy Vasyl Stefanyk Precarpathian National University
  • P.I. Kolkovskyi Vasyl Stefanyk Precarpathian National University
  • I.P. Yaremiy Vasyl Stefanyk Precarpathian National University
  • N.Ya. Ivanichok Vasyl Stefanyk Precarpathian National University
  • R.P. Lisovskiy Ivano-Frankivsk National Medical University
  • N.R. Ilnytskyi Ivano-Frankivsk National Medical University
Keywords: LaMnO3 manganite, activated carbon, Li2SO4 electrolyte, specific capacity

Abstract

In this work, the electrochemical behavior of LaMnO3 perovskite material and nanoporous carbon material in an aqueous solution of lithium sulfate are studied. The regularities of the expediency of the joint functioning of these materials as electrodes for a hybrid electrochemical capacitor are determined. It was found that the value of the specific capacity of the investigated electrochemical system of LaMnO3 / electrolyte / AC is 52 F/g during the discharge of the system to 1 V and the value of specific energy is 112.1 J /g at a discharge current of 1 mA.

References

F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chemical Society Reviews 6(22), 6816 (2017); https://doi.org/10.1039/c7cs00205j.

V. Boychuk, V. Kotsyubynsky, B. Rachiy, K. Bandura, A. Hrubiak, S. Fedorchenko, Materials Today: Proceedings 6(2), 106 (2019); https://doi.org/10.1016/j.matpr.2018.10.082.

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C. P. Grey, B. Dunn, P. Simon, Nature Energy 1, 16017 (2016); https://doi.org/10.1038/nenergy.2016.70.

R.Y. Shvets, I.I. Grygorchak, A.K. Borysyuk, S.G. Shvachko, A.I. Kondyr, V.I. Baluk, A.S. Kurepa, B.I. Rachiy, Physics of the Solid State 56(10), 2021 (2014); https://doi.org/10.1134/S1063783414100266.

L.L. Zhang, X.S. Zhao, Chemical Society Reviews 38(9), 2520 (2009); https://doi.org/10.1039/B813846J.

E. Arendt, A. Maione, A. Klisinska, O. Sanz, M. Montes, S. Suarez, J. Blanco, P. Ruiz, Applied Catalysis A: General 339(1), 1 (2008); https://doi.org/10.1016/j.apcata.2008.01.016.

Y. Tokura, Colossal Magnetoresistive Oxides (Amsterdam, Gordon and Breach Science and Publishers, 2000).

D. Munoz, N.M. Harrison, F. Illas, Physical Review B 69, 8 (2004); https://doi.org/10.1103/PhysRevB.69.085115.

S.A. Veldhuis, P.P. Boix, N. Yantara , M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar, Advansed Materials 28(32), 6804 (2016); https://doi.org/10.1002/adma.201600669.

N.G. Park, Materials today 18(2), 65 (2015); https://doi.org/10.1016/j.mattod.2014.07.007.

Y. Li, S. Yao, L. Xue, Y. Yan, Journal of Materials Science 44(16), 4455 (2009); https://doi.org/10.1007/s10853-009-3673-7.

C. Jin, X. Cao, L. Zhang, C. Zhang, R. Yang, J. Power Sources 241, 225 (2013); doi:org/10.1016/j.jpowsour.2013.04.116.

J. Hu, L. Shi, Q. Liu, H. Huang, T. Jiao, RSC Advances 5, 92096 (2015); https://doi.org/10.1039/c5ra14928b.

P.P. Ma, Q.L. Lu, N. Lei, Y.K. Liu, B. Yu, J.M. Dai, S.H. Li, G.H. Jiang, Electrochimica Acta 332, 135489 (2020); https://doi.org/10.1016/j.electacta.2019.135489.

H. Nan, X. Hu, H. Tian, Materials Science in Semiconductor Processing 94, 35 (2019); https://doi.org/10.1016/j.mssp.2019.01.033.

E.L. Nagaev, Uspekhi Phys. Nauk 166(8), 833 (1996) doi: 10.3367/UFNr.0166.199608b.0833 .

A.O. Novokhatska, Influence of excess manganese on the formation of the structure and magnetoresistive properties of doped manganites (Kyiv, 2018).

Z.A. Elsiddig, H. Xu, D. Wang, W. Zhang, X. Guo, Y. Zhang, Z. Sun, J. Chen, Electrochimica Acta 253, 422 (2017).

P Muhammed Shafi, A Chandra Boseand, Ajayan Vinu, Chem. Electro Chem. 5(23), 3723 (2018); https://doi.org/10.1002/celc.201801053.

K.C. Tsay, L. Zhang, J. Zhang, Electrochimica Acta 60, 428 (2012); https://doi.org/10.1016/j.electacta.2011.11.087.

J. Liu, X. Jin, W. Song, F. Wang, N. Wang, Y. Song, Chinese Journal of Catalysis 35(7), 1173 (2014); https://doi.org/10.1016/S1872-2067(14)60066-8.

W.G. Hardin, D.A. Slanac, X. Wang, S. Dai, K.P. Johnston, K.J. Stevenson, The Journal of Physical and Chemistry Letters 4(8), 1254 (2013); https://doi.org/10.1021/jz400595z.

J. Hu, L. Wang, L. Shi, H. Huang, Journal of Power Sources 269, 144 (2014); https://doi.org/10.1016/j.jpowsour.2014.07.004.

T.N. Vinuth Raj, Priya A. Hoskeri, H.B. Muralidhara, C.R. Manjunatha, K. Yogesh Kumar, M.S. Raghu, Journal of Electroanalytical Chemistry 858, 113830 (2020); https://doi.org/10.1016/j.jelechem.2020.113830.

Mingrui Wei, Wei Chea, Haizhao Li, Zhihao Wang, Fuwu Yan, Yihui Liu, Applied Surface Science 484, 551 (2019); https://doi.org/10.1016/j.apsusc.2019.04.015.

X.-Li Cao, T-Zh Ren, Z-Y Yuan, T. J. Bandosz, Electrochimica Acta 268, 73 (2018); https://doi.org/10.1016/j.electacta.2018.02.069.

B.I. Rachiy, I.M. Budzulyak, V.M. Vashchynsky, N.Y. Ivanichok, M.O. Nykoliuk, Nanoscale Research Letters 11(1), 18 (2016); https://doi.org/10.1186/s11671-016-1241-z.

T.Y. Boychuk, I.M. Budzulyak, N.Y. Ivanichok, R.P. Lisovskiy, B.I. Rachiy, Journal of Nano- and Electronic Physics 7(1), 01019 (2015).

B.K. Ostafiychuk, I.M. Budzulyak, B.I. Rachiy, R.P. Lisovsky, V.I. Mandzyuk, P.I. Kolkovsky, R.I. Merena, M.V. Berkeshchuk, L.V. Golovko, Journal of Nano- and Electronic Physics 9(5), 05001 (2017); https://doi.org/10.21272/jnep.9(5).05001.

Ahmed Afif, Sheikh MH Rahman, Atia Tasfiah Azad, Juliana Zaini, Md Aminul Islan, Abul Kalam Azad, Journal of Energy Storage 25, 100852 (2019); https://doi.org/10.1016/j.est.2019.100852.

B.K. Ostafiychuk, R.P. Lisovskiy, A.-S.A.H. Zamil, V.O. Kotsyubynsky, P.I. Kolkovsky, R.I. Merena, A.B. Hrubiak, Journal of Nano- and Electronic Physics 11(3), 03036 (2019); https://doi.org/10.21272/jnep.11(3).03036.

B.K. Ostafiychuk, I.M. Budzulyak, B.I. Rachiy, V.M. Vashchynsky, V.I. Mandzyuk, R.P. Lisovsky, L.O. Shyyko, Nanoscale Research Letters 10(1), 65 (2015); https://doi.org/10.1186/s11671-015-0762-1.

I. Yaremiy, S. Yaremiy, V. Fedoriv, O. Vlasii, A. Luсas, Eastern-European Journal of Enterprise Technologies 5(5(95)), 61 (2018); https://doi.org/10.15587/1729-4061.2018.142752.

V.S. Bushkova, S.I. Mudry, I.P. Yaremiy, V.I. Kravets, Journal of Physical Studies 20(1/2), 1702 (2016); https://doi.org/10.30970/jps.20.1702.

K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, Chemical Engeneering Journal 251, 116 (2014); https://doi.org/10.1016/j.cej.2014.04.006.

A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin, Y. Tian, Applied Surface Science 282, 704 (2013); https://doi.org/10.1016/j.apsusc.2013.06.038.

Y. Li, L. Xue, L. Fan, Y. Yan, Journal of Alloys and Compounds 478(1-2), 493 (2009); https://doi.org/10.1016/j.jallcom.2008.11.068.

D. Freik, T. Parashchuk, B. Volochanska, Journal of Crystal Growth 402, 90 (2014); https://doi.org/10.1016/j.jcrysgro.2014.05.005.

R. Ahiska, D. Freik, T. Parashchuk, I. Gorichok, Turkish Journal of Physics 38(1), 125 (2014).

I.V. Horichok, L.I. Nykyruy, T.O. Parashchuk, S.D. Bardashevska and M.P. Pylyponuk, Modern Physics Letter B 30(16), 1650172 (2016); https://doi.org/10.1142/S0217984916501724.

O. Cherniushok, R. Cardoso-Gil, T. Parashchuk, Y. Grin, K.T. Wojciechowski, Inorganic Chemistry 60(4), 2771 (2021); https://doi.org/10.1021/acs.inorgchem.0c03549.

J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Nature Materials 13(7), 726 (2014); https://doi.org/10.1038/nmat4000.

M.W. Xu, L.B. Kong, W.J. Zhou, H.L. Li, Journal of Physical Chemistry C 111(51), 19141 (2007); https://doi.org/10.1021/jp076730b.

Published
2021-11-11
How to Cite
[1]
KolkovskaH., RachiyB., KolkovskyiP., YaremiyI., IvanichokN., LisovskiyR. and IlnytskyiN. 2021. Mechanisms of charge accumulation of the electrochemical system LaMnO3 / AC. Physics and Chemistry of Solid State. 22, 4 (Nov. 2021), 644-654. DOI:https://doi.org/10.15330/pcss.22.4.644-654.
Section
Scientific articles (Physics)

Most read articles by the same author(s)

1 2 > >>