Features of cubic Ni3C and NiC carbides obtained by HT-HP sintering


  • O.I. Nakonechna Taras Shevchenko National University of Kyiv
  • D.A. Stratiichuk V. Bakul Institute for Superhard Materials, NAS of Ukraine
  • A.M. Kuryliuk Taras Shevchenko National University of Kyiv
  • N.N. Belyavina Taras Shevchenko National University of Kyiv




mechanical alloying, nanoscale material, x-ray diffraction, crystal structure, microhardness


In this work NiC carbides were manufactured by HP-HT sintering of mechanically alloyed charges of the elemental Ni–carbon nanotubes (CNT) or Ni–Graphite. Structural features of the materials obtained were characterized by X-ray diffraction and scanning electron microscopy. X-ray diffraction studies have revealed that the crystal lattice of nickel carbide obtained from mechanically alloyed Ni–CNT charge is supplemented with additional Carbon atoms from the graphite shell of the high-pressure cell at HT-HP sintering. On the other hand, nickel carbide fabricated from mechanically alloyed Ni–Graphite charge retains its composition. It is shown that materials studied in this work demonstrate an advanced value of microhardness (up to 7 GPa).


C. Suryanarayana, N. Al-Aqeeli, Progress in Materials Science 58, 383 (2013); https://doi.org/10.1016/j.pmatsci.2012.10.001.

M. Sherif El-Eskandarany, Mechanical alloying: nanotechnology, materials science and powder metallurgy (Elsevier, 2015).

M. Sherif El-Eskandarany, Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications (William Andrew, 2020).

R. P. Struis, D. Bachelin, C. Ludwig, A. Wokaun, J. Phys. Chem. C, 113(6), 2443 (2009); https://doi.org/10.1021/jp809409c.

O. M. Gur’yanova, E. F. Kukovitskii, S. G. L’vov, et al., Phys. Sol. St. 44(3),473 (2002); https://doi.org/10.1134/S0031918X10020079.

C. Borchers, P. Ricardo, C. Michaelsen, Philos. Mag. A 80(7), 1669 (2000); https://doi.org/10.1080/01418610008212143.

Z. Krawietr, B. Wehner, T. Sebald, R. dietsch, mater. sci. forum 166–169, 1247 (1994); https://doi.org/10.4028/www.scientific.net/msf.166-169.

S. Sinharo, L. L. Levenson, Thin Solid Films 53(1), 31 (1978); https://doi.org/10.1016/0040-6090(78)90367-x.

L. Diandra, X. Q. Leslie Pelecky, S. H. Zhang, et al., Chem. Mater. 10, 164 (1998); https://doi.org/10.1021/cm9702979.

S. I. Ryabtsev, V. F. Bashev, A. I. Belkin, and A. S. Ryabtsev, Phys. Met. Metallogr. 102(3), 305 (2006); https://doi.org/10.1134/s0031918x06090109.

T. Tanaka, K. N. Ishihara, and P. Shingu, Metall. Trans. A 23, 2431 (1992); https://doi.org/10.1007/bf02658046.

O. Nakonechna, N. Belyavina, M. Dashevskyi, Y.A. Titov, French-Ukrainian Journal of Chemistry 7(1), 113 (2019); https://doi.org/10.17721/fujcv7i1p113-120.

O. I. Nakonechna, M. M. Dashevskyi, O. I. Boshko, V. V. Zavodyannyi, N.N. Belyavina, Progress in Physics of Metals 20(1), 1 (2019); https://doi.org/10.15407/ufm.20.01.001.

O. Nakonechna, M. Dashevskyi, N. Belyavina, Metallofizika I Noveishie Tekhnologii 40(5), 414 (2018); https://doi.org/10.15407/mfint.40.05.0637.

O. Boshko, O. Nakonechna, N. Belyavina, M. Dashevskyi, S. Revo, Advanced Powder Technology 28(3), 964 (2017); https://doi.org/10.1016/j.apt.2016.12.026.

Y. A. Titov, N. M. Belyavina, M. S. Slobodyanik, V. V. Chumak, O. I. Nakonechna, Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 67 (2019) https://doi.org/10.32434/0321-4095-2019-122-1-67-72.

S. R. Nishitani, K. N. Ishihara, R. O. Suzuki, P. H. Shingu, J. Mater. Sci. Lett. 4, 872 (1985); https://doi.org/10.1007/bf00720526.

K. Tokumitsu, K. Majima, R. Yamamoto, Solid State Ionics 172, 211 (2004); https://doi.org/10.1016/j.ssi.2004.05.019.

K. Tokumitsu, Mater. Sci. Forum 235–238, 127 (1997); https://doi.org/10.4028/www.scientific.net/msf.235-238.

V. K. Portnoi, A. V. Leonov, S. N. Mudretsova, S. A. Fedotov, The Physics of Metals and Metallography, 109(2), 153 (2010); https://doi.org/10.1134/s0031918x10020079.

O. I. Nakonechna, N. N. Belyavina, M. M. Dashevskyi, A. M. Kuryliuk, V. A. Makara, Dopov. Nac. akad. nauk Ukr. 4, 50 (2019); https://doi.org/10.15407/dopovidi2019.04.050.

O. I. Nakonechna, N. N. Belyavina, K. O. Ivanenko, A. M. Kuryliuk, M. G. Dusheiko, V. A. Makara, Dopov. Nac. akad. nauk Ukr. 3, 47 (2020); https://doi.org/10.15407/dopovidi2020.03.047.

R. Ostapenko, K. Ivanenko, A. Kuryliuk, O. Nakonechna. N.Belyavina, Adv. Powder Technol. 33(2) (2022); https://doi.org/10.1016/j.apt.2021.12.009

N. N. Belyavina, V. Y. Markiv, M. V. Mathieu, O. I. Nakonechna, Journal of Alloys and Compounds, 523, 114 (2012); https://doi.org/10.1016/j.jallcom.2012.01.113.

M. Dashevskyi, О. Boshko, O. Nakonechna, N. Belyavina, Metallofiz. Noveishie Tekhnol. 39(4), 541-552 (2017); https://doi.org/10.15407/mfint.39.04.0541.



How to Cite

Nakonechna, O., Stratiichuk, D., Kuryliuk, A., & Belyavina, N. (2022). Features of cubic Ni3C and NiC carbides obtained by HT-HP sintering. Physics and Chemistry of Solid State, 23(1), 34–39. https://doi.org/10.15330/pcss.23.1.34-39



Scientific articles (Physics)