Novel Ti2CuCx and Ti3Cu2Cx Carbides Obtained by Sintering of Products of Mechanochemical Synthesis of Ti, Cu and Carbon Nanotubes

Array

Authors

  • O.I. Nakonechna Taras Shevchenko National University of Kyiv
  • N.N. Belyavina Taras Shevchenko National University of Kyiv
  • M.M. Dashevskyi Taras Shevchenko National University of Kyiv
  • K.O. Ivanenko Taras Shevchenko National University of Kyiv
  • S.L. Revo Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15330/pcss.19.2.179-185

Keywords:

Multiwalled carbon nanotube, Nanocomposite material, X-ray diffraction, Hardness

Abstract

Mechanical alloying of the elemental powder mixture of titanium and copper (particle size of both powdersis about 40 μm, purity is not less than 99.6% wt. %) was performed in a high energy planetary ball mill to obtainTi:Cu (2:1 and 3:1) compositions. An addition of 1 vol. % of multiwalled carbon nanotubes (MWCNT, averagediameter 10-20 nm) into Ti-Cu charge results in a formation of nanoscaled Ti2CuCx and Ti3Cu2Cx carbides(containing 0.5 and 4.2 at.% of carbon and 30.8 and 37.5 at.% of copper, respectively). These carbides havesynthesized for the first time. Nature of interaction of the charge components at processing in a ball mill hasstudied on test samples using a complex of X-ray techniques. These techniques include a full-profile analysis forthe primary processing of diffractograms obtained with DRON-3M apparatus; qualitative and quantitative phaseanalysis for determining the phase composition of the products of synthesis; X-ray structural analysis to verifyand refine the structural models; Williamson-Hall method for determining the grain sizes. The Vickers hardnessof compacted (by sintering) samples with 20.1 and 27.3 at. % Cu varies substantially within (6.9-7.1) GPa. Thus,the average microhardness of synthesized materials is 7 times higher than that of pure titanium microhardness.

References

[1] M. Takahashi, M. Kikuchi, Y. Takada, O. Okuno, Dental materials journal 21(3), 270 (2002).
[2] M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Zh. Cai, O. Okuno, T. Okabe, Dental materials 19(3), 174 (2003).
[3] M. Kikuchi, M. Takahashi, O. Okuno, Dental Materials 22(7), 641 (2006).
[4] M. Kikuchi, M. Takahashi, T. Okabe, O. Okuno, Dental materials journal 22(2), 191 (2003).
[5] J. Liu, X. Zhang, H. Wang, F. Li, M. Li, K. Yang, E. Zhang, Biomedical Materials 9(2), 025013 (2014).
[6] C. Politis, W. L. Johnson, Journal of applied physics 60(3), 1147 (1986).
[7] C. Suryanarayana, Progress in Materials Science 46, 1-184 (2001).
[8] O. Boshko, O. Nakonechna, M. Dashevskyi, К. Ivanenko, N. Belyavina, S. Revo, Adv. Powder Technol. 27(4), 1101 (2016).
[9] O. Boshko, O. Nakonechna, N. Belyavina, M. Dashevskyi, S. Revo, Adv. Powder Technol. 28(3), 964 (2017).
[10] O.I. Boshko, M.M. Dashevskyi, K.O. Ivanenko, S.L. Revo, Metallofiz. Noveishie Tekhnol. 37(7), 921 (2015).
[11] S.L. Revo, M.M. Melnichenko, M.M. Dashevskyi, N.N. Belyavina, O.I. Nakonechna, K.O. Ivanenko, O.I. Boshko, T.G. Avramenko, Springer Proceedings in Physics 195, 799 (2017).
[12] Yu.I. Sementsov, N.A. Gavrilyuk, G.P. Prikhod'ko, A.V. Melezhyk, M.L. Pyatkovsky, V.V. Yanchenko, S.L. Revo, E.A. Ivanenko, A.I. Senkevich, NATO Security through Science Series A: Chemistry and Biology, 757 (2007).
[13] G.V. Samsonov, Handbook of the Physicochemical Properties of the Elements (Springer, Boston, MA. 1968).

Published

2019-05-03

How to Cite

Nakonechna, O., Belyavina, N., Dashevskyi, M., Ivanenko, K., & Revo, S. (2019). Novel Ti2CuCx and Ti3Cu2Cx Carbides Obtained by Sintering of Products of Mechanochemical Synthesis of Ti, Cu and Carbon Nanotubes: Array. Physics and Chemistry of Solid State, 19(2), 179–185. https://doi.org/10.15330/pcss.19.2.179-185

Issue

Section

Review