Simulation of structural and electrical parameters of СdS thin films
DOI:
https://doi.org/10.15330/pcss.22.4.781-785Keywords:
nanostructures, density of state, the method of the theory of functionality of electronic density, pseudopotential, solar cells, nanoparticles, transition metalsAbstract
Based on the calculations from the first principles, we obtained the distributions of valence electron densities and electron energy spectra for a CdS film with different oxygen concentrations. According to the results of calculations, it is established that during the adsorption of oxygen atoms on the surface of CdS, oxygen taking electrons from the surface atoms of the CdS film, increases its catalytic activity. The oxygen concentration should not exceed 12.5%.
References
N. Lejmi, & O. Savadogo, Solar Energy Materials and Solar Cells, 70(1), 71–83 (2001); https://doi.org/10.1016/S0927-0248(00)00412-8.
P. Christian, P. O’Brien, Journal of Materials Chemistry, 18(14), (2008); https://doi.org/10.1039/b717656b).
Z. Hu, S. Liu, H. Qin, J. Zhou, X. Peng, Journal of the American Chemical Society, Am. Chem. Soc. 2020, 142, 9, 4254–4264 (2020); https://doi.org/10.1021/jacs.9b11978.
V. H. Martínez-Landeros, N. Hernandez-Como, G. Gutierrez-Heredia, M. A. Quevedo-Lopez, F. S. Aguirre-Tostado, Thin Solid Films, 682, 24–28 (2019); https://doi.org/10.1016/j.tsf.2019.05.014.
Y. Zhu, X. Wang, M. Liu, Y. Zhang, S. Zhang, G. Jiang, … K. Yu, Chemical Physics Letters, 779, 138870 (2021); https://doi.org/10.1016/j.cplett.2021.138870.
M. Husham, Z. Hassan, A. M. Selman, The European Physical Journal Applied Physics, 74(1), 10101 (2016); https://doi.org/10.1051/epjap/2016150414.
I. E. Tinedert, A. Saadoune, I. Bouchama, M. A. Saeed, Optical Materials, 106, 109970 (2020); https://doi.org/10.1016/j.optmat.2020.109970.
X. He, P. Ercius, J. Varley, J. Bailey, G. Zapalac, T. Nagle, … A. Rockett, Progress in Photovoltaics: Research and Applications, 27(3), 255–263 (2018); https://doi.org/10.1002/pip.3087.
D.M. Meysin, C.A. Wolden, M.M. Griffith, H. Mahabaduge, J. Pankow, M.O. Reese, … T.M. Barnes, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 33(2), 021203 (2015); https://doi.org/10.1116/1.4903214.
Ab initio calculation, http://sites.google.com/a/kdpu.edu.ua/calculationphysics/.
G. B. Bachelet, D. R. Hamann, M.. Schlüter, Physical Review B, 26(8), 4199–4228 (1982); https://doi.org/10.1103/physrevb.26.4199.
W. Kohn, L.J. Sham, Physical Review, 140(4A), A1133–A113 (1965); https://doi.org/10.1103/physrev.140.a1133.
O.M. Chernikova, Y.V. Ogorodnik. Materials Today: Proceedings, 35 (17), 599-603 (2019); https://doi.org/10.1016/j.matpr.2019.11.224.
I. Oladeji, L. Chow, J. Liu, W. Chu, A. N. Bustamante, C. Fredricksen & A. Schulte, Thin Solid Films, 359(2), 154–159, (2000); https://doi.org/10.1016/s0040-6090(99)00747-6.
Masaya Ichimuraa, Fumitaka Goto and Eisuke Arai, Journal of applied physics, 85 (10), 7411- 7417 (1999); https://doi.org/10.1063/1.369371.
S. Vempati, Y. Ertas, T. Uyar, J. Phys. Chem. C, 117, 21609−21618 (2013); https://doi.org/10.1021/jp991469n.
C. E. Reed, C. G. Scott, J. Appl. Phys., 15, 1045−1050 (1964).
X. He, P. Ercius, J. Varley, J. Bailey, G. Zapalac, T. Nagle, … A. Rockett, Progress in Photovoltaics: Research and Applications, 27(3), 255–263 (2018); https://doi.org/10.1002/pip.3087.
J. M. Kephart, R. M. Geisthardt, W. S. Sampath, Prog. Photovolt.: Res. Appl. 23, 1484-1492 (2015); https://doi.org/10.1002/pip.2578.
D. M. Meysing, C. A. Wolden, M. M. Griffith, H. Mahabaduge, J. Pankow, M. O. Reese, J. M. Burst, W. L. Rance, T. M. Barnes, J. Vac. Sci.Technol. A 33, 021203 (2015).