Percolation characteristics of filled polyurethane auxetics

  • T.M. Shevchuk Rivne State University for the Humanities, Rivne, Ukraine
  • M.A. Bordyuk Rivne Medical Academy, Rivne, Ukraine
  • V.A. Mashchenko National University of Water and Environmental Engineering; Scientific and manufacturing company “PRODECOLOGIA”, Rivne, Ukraine
  • V.P. Kvasnikov National Aviation University, Kyiv, Ukraine
  • V.V. Krivtsov Rivne State University for the Humanities, Rivne, Ukraine
Keywords: polymer auxetic, Poisson's ratio, fractal, critical percolation indices, percolation cluster, coordination number, macrolattice


According to the experimental values of the propagation velocities of longitudinal and transverse ultrasonic waves, the Poisson's ratio of polyurethane systems filled with metal particles was determined. For such systems, the Poisson's ratio is negative. Its value for metal-filled polymer auxetics with polyurethane matrix allowed to determine fractal dimensions and critical percolation indices. This approach made it possible to clarify the features of structure formation in polymer auxetics. It is shown that the fractal-percolation characteristics of these systems are determined by the type of metal filler and the size of its particles.


M. Harper, L. Guoqiang, A review of stimuli-responsive shape memory polymer composites. Polymer 54, 2199–2221 (2013);

G. M. Odegard, A. Bandyopadhyay, Physical aging of epoxy polymers and their composites. Journal of Polymer Science, Part B: Polymer Physics 49 (24), 1695–1716 (2011);

F. Mengand, E. M. Terentjev, Theory of semi flexible filaments and networks. Polymers 9(52), 1–28, (2017);

K. S. Bhullar, Three decades of auxetic polymers: a review. e-Polymers 15(4), 205–215 (2015);

Y. T. Yао, K. L. Alderson, A. Alderson, Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ. Cellulose 23, 3429–3448 (2016);

E. P. Degabriele, D. Attard, J. N. Grima-Cornish, R. Caruana-Gauci, R. Gatt, K. E. Evans, J. N. Grima, On the Compressibility Properties of the Wine-Rack-Like Carbon Allotropes and Related Poly(phenylacetylene) Systems. Phys. Status Solidi B 256(1), 1800572, 1–10 (2019);

Y. K. Yi, R. Sharston, D. Barakat, Auxetic structures and advanced daylight control systems. J. of Facade Design and Engineering 7 (1), 063–074 (2019);

T. M. Shevchuk, M. A. Bordyuk, V. V. Krivtsov, V. A. Mashchenko, Fractal-percolation approach for determination of structural and mechanical properties of metal-filled polyurethane auxetics. Metallophysics and Advanced Technologies 42(9), 1293–1302 (2020);

A. Cornillea, S. Dworakowskab, D. Bogdalb, B. Boutevina, S. Caillol, A new way of creating cellular polyurethane materials: NIPU foams. European Polymer Journal 66, 129–138 (2015);

T.-C. Lim, An anisotropic auxetic 2D metamaterial based on sliding microstructural mechanism. Materials, 12(3), 429; (2019);

V. Blavatska, C. von Ferber, Yu. Holovatc, Star copolymers in porous environments: Scaling and its manifestations. Phys. Rev. E 83(1), 011803, 1–9 (2011);

H.-K. Janssen, O. Stenull, Scaling exponents for a monkey on a tree: Fractal dimensions of randomly branched polymers. Phys. Rev. E 85(5), 051126, 1–15 (2012);

K. Haydukivska, V. Blavatska, Conformational properties of polymers in anisotropic environments. Condensed Matter Physics 17(2), 23301, 1–15 (2014);

V. Blavatska, N. Fricke, W. Janke. Polymers in disordered environments. Condensed Matter Physics 17(3), 33604, 1–11 (2014);

T. M. Shevchuk, M. A. Bordyuk, Fractal Dimension and Parameters of the Grunasena Polymer Systems with Negative Poissonratio. Physics and Chemistry of Solid State 17(4), 476–481 (2016);

B. S. Kolupaev, Yu. S. Lipatov, V. I. Nikitchuk, N. A. Bordyuk, O. M. Voloshin, Composite materials with negative Poisson coefficient. Inzh.-Fiz. Zhurnal, 69(5), 726–733 (1996).

N. A. Bordyuk, S. M. Gusakovskii, S. M. Ivashchuk, B. S. Kolupaev, Acoustic properties of polymeric mixtures. Acoustical Physics 44(1), 15–17 (1998).

V. A. Mashchenko, O. O. Panchuk, I. O. Sadovenko, M. A. Bordyuk, Eksperymentalna ustanovka dlya vymiryuvannya pruzhnih parametriv girskih porid. Bulletin of Engineering Academy of Ukraine 3–4, 60–64 (2012).

G. V. Kozlov, V. U. Novikov, A cluster model for the polymer amorphous state. Soviet Physics Uspekhi 44(7), 681–724 (2001);

B. S. Kolupayev, N. A. Bordyuk, Thermal conductivity study of the boundary layer in filled polyvinylchloride (PVC) and polyvinylbutyral (PVB). Polymer Science U.S.S.R. 23(7), 1652-1659 (1981);

T. M. Shevchuk, M. A. Bordyuk, V. V. Krivtsov, V. A. Maschenko, Effect of critical filler content on structural and fractal percolation properties of filled vinyl polymers. Polymer Journal 41(4), 264–270 (2019);|polymer.41.04.264.

M. I. Sokolov, Dimensionalities and other geometric critical exponents in percolation theory. Soviet Physics Uspekhi 29(10), 924–945 (1986);

V. V. Novikov, K. W. Wojciechowski, Negative Poisson coefficient of fractal structures. Physics of the Solid State 41(12), 1970–1995 (1999).

G. V. Kozlov, Structureandpropertiesof particulate-filled polymernanocomposites. Soviet Physics Uspekhi 58(1), 33–60 (2015);

How to Cite
ShevchukT., BordyukM., MashchenkoV., KvasnikovV., & KrivtsovV. (2022). Percolation characteristics of filled polyurethane auxetics. Physics and Chemistry of Solid State, 23(3), 590-596.
Scientific articles (Physics)