Debye temperatures and nanostructuring of polyurethane auxetics

Authors

  • T.M. Shevchuk Rivne State Humanities University, Rivne, Ukraine
  • M.A. Bordyuk Rivne Medical Academy, Rivne, Ukraine
  • V.A. Mashchenko National University of Water and Environmental Engineering, Scientific and Manufacturing Firm „Prodecologia”, Rivne, Ukraine
  • V.V. Krivtsov Rivne State Humanities University, Rivne, Ukraine
  • L.V. Mashchenko Ivan Boberskyi Lviv State University of Physical Culture, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.2.316-324

Keywords:

polymer auxetic, longitudinal, transverse and surface waves, propagation velocity, Poisson's ratio, temperatures and Debye frequencies, root mean square deviation, nanostructuredness

Abstract

Based on experimental values of longitudinal and transverse ultrasonic wave propagation velocities and surface Rayleigh wave velocities were calculated phonon energies and Debye limiting frequencies and temperatures were determined of metal-filled polyurethane auxetics samples. Modeling the structural formations of such systems and obtaining the value of the lattice and Grüneisen acoustic parameter made it possible to find the root-mean-square displacement of the atomic groups of the macromolecule, as well as the limits of forced elasticity, shear deformation, and deformation of the interstructural bond. The relationship between Debye frequencies (temperatures) and Poisson's ratio, Grüneisen parameter, was established. A quantum-mechanical approach to the movement of electrons, atomic groups of macromolecules, thermal and sound phonons made it possible to estimate the size of nanoformations in the composition. The theoretical values of Poisson's ratio obtained based on models of polymer auxetics and processes of propagation of ultrasonic waves in such systems are analyzed.

References

O. P. Cheiliakh, Ya. O. Cheiliakh, Implementation of physical effects in the operation of smart materials to form their properties, Progress in Physics of Metals, 21 (3), 363 (2020); https://doi.org/10.15407/ufm.21.03.363.

M. A. Levina, D. G. Miloslavskii, M. V. Zabalov, Green chemistry of polyurethanes: synthesis, functional composition and reactivity of cyclocarbonate-containing sunflower oil triglycerides–renewable raw materials for new urethanes, Polymer Sciense, Series B, 61, 540 (2019); https://doi.org/10.1134/S1560090419050117.

T. T. Alekseeva, N. V. Babkina, N. V. Iarova, O. M. Gorbatenko, In fluence of the method of obtaining titanium containing interpenetrating polymer meshes on the kinetics of their formation, viscoelastic and thermophysical properties when varying the Ti-component, Nanosystems, Nanomaterials, Nanotechnologies, 18 (1), 125 (2020);. https://doi.org/10.15407/nnn.18.01.125.

K. S. Bhullar. Three decadesof auxetic polymers: a review, e-Polymers. 15 (4), 205 (2015); https://doi.org/10.1515/epoly-2014-0193.

F. Scarpa, J. R. Yates, L. G. Ciffo S. Patsias, Dynamic crushing of auxetic open-cellpolyurethane foam, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216 (12), 1153 (2002); https://doi.org/10.1243/095440602321029382.

Т. М. Shevchuk, М. А. Bordyuk, V. V. Krivtsov, V. A. Mashchenko. Fractal-percolation approach for determination of structural and mechanical properties of metal-filled polyurethane fuxetics, Metallofizika i Noveishie Tekhnologii, 42 (9), 1293 (2020); https://doi.org/10.15407/mfint.42.09.1293.

M. N. Magomedov. On the calculation of the Debye temperature and crystal–liquid phase transition temperature of a binary substitution alloy, Physics of the Solid State, 60, 981 (2018); https://doi.org/10.1134/S1063783418050190.

M. N. Magomedov. A change in the Debye temperature of a single-component substance upon amorphization, Technical Physics Letters, 45, 1042 (2019); https://doi.org/10.1134/S1063785019100249.

E. P. Troitskaya, E. A. Pilipenko, I. I. Gorbenko. Specific Heat Capacity and the Debye Temperature of a Compressed Crystalline Neon in the Model of Deformable Atoms, Physics of the Solid State, 62, 2393 (2020); https://doi.org/10.1134/S1063783420120288.

M. D. Raranskyi, V. N. Balazyuk, М. М. Gunyko, F. Ya. Struk. Analysis of specific auxetic properties of fullerite С60, Easten-European Journal of Enterprise Technologies 5 (5(77)) Applied physics. Materials Science, 18, (2015); https://doi.org/10.15587/1729-4061.2015.51345.

В. S. Koluev, M. А. Borduk, Yu. S. Lipatov. Frequency spectrum of structural elements of filled polyvinyl chloride, Dopovidi NАN Ukrainy, 8, 112 (1995).

B. S. Kolupaev, N. A. Bordyuk, O. M. Voloshin, Yu. S. Lipatov. The frequency spectrum of the structure elements of filled polyvinylchloride, Journal of Polymer Materials, 12, 143 (1995).

M. А. Borduk, B. S. Kolupaev, Yu. S. Lipatov. Contribution of the macrolattice to the dynamic and thermophysical properties of filled poly(vinyl chloride), Ukrainian Chemical Journal, 62 (4) 136, (1996).

M. А. Borduk, O. M. Voloshin, B. S. Kolupaev, Yu. S. Lipatov. Thermal energy transfer processes in heterogeneous systems based on linear amorphous polymers, Ukrainian Journal of Physics, 41 (4), 438, (1996).

Т. М. Shevchuk, М. А. Bordyuk, V. V. Krivtsov, V. V. Kukla, V. A. Mashchenko. Viscoelastic properties of filled polyurethane auxetics, Physics and Chemistry of Solid State, 22 (2), 32 (2021); https://doi.org/10.15330/pcss.22.2.328-335.

V. V. Klepko, B.B. Kolupaev, E. V. Lebedev, V. A. Mashchenko. Contribution of surface rayleigh waves to the heat capacity of poly(vinyl chloride), Polymer Sciense, Series A, 51 (9), 986 (2009); https://doi.org/10.1134/S0965545X09090041.

M. Ya. Seneta, R. M. Peleshchak, A. I. Nesterivskyi, N. I. Lazurchak, S. K. Guba. The influence of adsorbed atoms concentration on the temperature coefficient of resonant frequency of the quasi-Rayleigh wave, Condensed Matter Physics, 24 (1), 13401: 1 (2021); https://doi.org/10.5488/CMP.24.13401.

G. M. Kvashnin, B. P. Sorokinand S. I. Burkov. Excitation of surface acoustic waves and Lamb waves at superhigh frequencies in a diamond-based piezoelectric layered structure, Acoustical Physics, 67 (1), 38 (2021); https://doi.org/1134/S1063771021010024.

Physical acoustics / Editors W. P. Maison, R. N. Thurston. VI, (Academic Press, 1988).

P. C. Vinh, P. G. Malischewsky. Explanation for Malischewsky’s approximate expression for the Rayleigh wave velocity, Ultrasonics,45 (1), 77 (2006); https://doi.org/10.1016/j.ultras.2006.07.001.

V. А. Mashchenko. Method determinations of the dynamic Poison’s ratio of polymers auxetic using three types of acoustic waves, International scientific-technical journal “Measuring and Computing Devises in Technological Processes, 1, 16 (2020); https://doi.org/10.31891/2219–9365–2020–65–1–3.

S. S. Sangadiev, M. V. Darmaev, D. S. Sanditov. Elastic moduli and Poisson ratio of amorphous organic polymers, Polymer Sciense, Series A, 62, 174 (2020); https://doi.org/10.1134/S0965545X20030116.

B. S. Kolupaev, Yu. S. Lypatov, V. Y. Nykytchuk, N. A. Bordyuk, O. M. Voloshyn. Composite materials with negative Poisson coefficient, Inzhenerno-Fizicheskii Zhurnal, 69 (5), 726 https://doi.org/10.1007/bf02606165.

V.А. Mashchenko, V. P. Kvasnikov. Measurement methods and automated instrument systems for determining modulus of elasticity (Volynski oberegy, Rivne, 2023).

Y. Liu, H. Hu A review on auxetic structures and polymeric materials, Scientific Research and Essays, 5 (10), 1052 (2010); https://academicjournals.org/journal/SRE/article-abstract/27EF13219060.

I. B. Olenych, O. I. Aksimentyeva, B. R. Tsizh, Y. Y. Horbenko, Transport and Relaxation of Charge in Organic-Inorganic Nanocomposites, Acta Physica Polonica, Series A, 133 (4), 851 (2018); https://doi.org/10.12693/APhysPolA.133.851.

T. M. Shevchuk, М.А. Borduk. Fractality and Grüneisen parameter of polymer systems with negative Poisson's ratio, Physics and Chemistry of Solid State, 17 (4), 476 (2016); https://doi.org/10.15330/pcss14.4.476–481.

Published

2024-06-03

How to Cite

Shevchuk, T., Bordyuk, M., Mashchenko, V., Krivtsov, V., & Mashchenko, L. (2024). Debye temperatures and nanostructuring of polyurethane auxetics. Physics and Chemistry of Solid State, 25(2), 316–324. https://doi.org/10.15330/pcss.25.2.316-324

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)