Modeling the Bimodal Behavior of Self-Repairing Optical Window Systems Prone to Brittle Failure

  • O.L. Kapitanchuk Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
  • V.I. Teslenko Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
Keywords: optical window systems, brittleness, failure susceptibility, competitive advantage

Abstract

Using an exact solution for transient state population of a three-stage absorbing Markov chain the problem of modeling the bimodal behavior of three window materials represented as some self-repairing optical systems prone to brittle failure is considered quantitatively. It is shown that simulated maximum failure probability density distributions can well describe the experimental data of biaxial tests on OFG, CVD-ZnSe and a-plane sapphire ceramics. The conclusion is made that the competitive advantage of these materials grows in proportion to their distribution widths.

References

D.N.P. Murthy, M. Xie and R. Jiang, Weibull Models (John Wiley& Sons, New York, 2004).

B. Novakovic and I. Knezevic, Quantum master equations in electronic transport, in: Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, edited by D. Vasileska and S. M. Goodnic (Springer, New York, 2011). P. 249.

K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications (John Wiley & Sons, Hoboken, NJ, 2016).

D.M. Nicol, W.H. Sanders and K.S. Trivedi, IEEE Trans. Depend. Secure Comput. 1, 48 (2004) (https://doi.org/10.1109/TDSC.2004.11).

M.I. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley, Hoboken, NJ, USA, 2014).

O.L. Kapitanchuk, O.M. Marchenko and V.I. Teslenko, Chem. Phys. 472, 249 (2016) (https://doi.org/10.1016/j.chemphys.2016.03.007).

H. Fisher, Nat. Sci. 2, 873-901 (2010) (https://doi.org/10.4236/ns.2010.28110).

U. Lafont, H. van Zeijl and S. van der Zwaag, Microelectronics Reliab. 52, 71 (2012).

C.A. Klein, Proc. SPIE 7504, 75040K (2009) (https://doi.org/10.1117/12.836920).

H. Frauenfelder and P.G. Wolynes, Science 229, 337 (1985) (https://doi.org/10.1126/science.4012322).

O.V. Rudenko, Usp. Fiz. Nauk 176, 77 (2006). [Phys. Usp. 49, 69 (2006).]

V.I. Teslenko, O.L. Kapitanchuk and Y. Zhao, Chin. Phys. B 24, 028702 (2015) (https://doi.org/10.1088/1674-1056/24/2/028702).

E. Petrov and V. Teslenko, Nanobiophysics: Fundamentals and Applications, edited by V. A. Karachevtsev, chapter 9, p.267 (Pan Stanford Publishing, Singapore, 2016) (https://doi.org/10.1201/b20480).

J.P. Berry, Nature 212, 20 (1966) (https://doi.org/10.1038/212020a0).

B. Tsoi, E. M. Kartashov and V. V. Shevelev, The Statistical Nature of Strength and Lifetime in Polymer Films and Fibers (VSP, Zeist, The Netherlands, 2004). [B. Tsoi, É. M. Kartashov and V. V. Shevelev, Strength and Fracture of Polymer Films and Fibers (Khimiya, Moscow, 1999)].

C.A. Klein, Opt. Eng. 50(2), 023402 (2011) (https://doi.org/10.1117/1.3541804).

C.A. Klein and R. P. Miller, Proc. SPIE 4375, 2411 (2001) (https://doi.org/10.1117/12.439181).

CA. Klein, J. Appl. Phys. 96, 3172 (2004) (https://doi.org/10.1063/1.1782272).

C. A. Klein, Proc. SPIE 8016, 80160J (2011) (https://doi.org/10.1117/12.883019).

V.I. Teslenko and O.L. Kapitanchuk, Mod. Phys. Lett. B 32, 1850022 (2018)

(https://doi.org/10.1142/S0217984918500227).

A.N. Gorban, Entropy 16, 2408-2432 (2014) (https://doi.org/10.3390/e16052408).

V. I. Teslenko and O. L. Kapitanchuk, J. Phys. Stud. 19, 1001 (2015).

V.I. Teslenko and O. L. Kapitanchuk, Acta Phys. Polon. 49, 1581 (2018) (https://doi.org/10.5506/APhysPolB.49.1581).

C.A. Klein, Opt. Eng. 37, 2826 (1998) (https://doi.org/10.1117/1.601820).

Published
2019-10-18
How to Cite
[1]
KapitanchukO. and TeslenkoV. 2019. Modeling the Bimodal Behavior of Self-Repairing Optical Window Systems Prone to Brittle Failure. Physics and Chemistry of Solid State. 20, 3 (Oct. 2019), 269-274. DOI:https://doi.org/10.15330/pcss.20.3.269-274.
Section
Scientific articles