Structural, morphological and photocatalytic properties of TiO2 obtained by thermolytic decomposition of the [Ti(OH2)6]3+•3Cl¯ aquacomplex

  • I. Mironyuk Department of Chemistry, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • N. Danyliuk Educational and Scientific Center of Material Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • L. Turovska Department of Medical Informatics, Medical and Biological Physics, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • I. Mykytyn Department of Chemistry, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Keywords: titania, rutile, Congo Red, photocatalyst


Thermolytic decomposition in a chloride-acid medium of a titanium aquacomplex precursor solution [Ti(OH2)6]3+•3Cl¯ as a result of its boiling at a temperature of (110-114) 0С is accompanied by precursor hydrolysis and the formation of hydrate molecules Ti(OH)3Cl•2Н2О, which, as a result of condensation, provide the formation of rutile ТіО2 with rod-shaped particles (30-80) nm long and (8-20) nm in diameter, combined into flower-shaped associates with a diameter of (200-280) nm. IR spectroscopic studies of the precursor hydrolysis products and the synthesized oxide material show that the geometric parameters of ТіО5Cl octahedra of Ti(OH)3Cl •2Н2О hydrate molecules are close to those of ТіО6 octahedra of ТіО2 rutile. The average Ti-O interatomic distance of octahedra of titanium-containing hydrate molecules is a kind of template that directs the process of ТіО2 crystallization towards the formation of rutile. Rutile ТіО2 nanopowder synthesized in this way is an effective photocatalyst for the photooxidation of organic dyes in an aqueous medium by UV radiation. The photocatalytic activity of the synthesized rutile ТіО2 was determined by neutralization of Congo Red (CR) dye dissolved in an aqueous medium. The effectiveness of TiO2 was studied by examining the effect of TiO2 amount and Н2О2 concentration. It has been established that complete bleaching of the dye is achieved in just 10 minutes of UV irradiation at a photocatalyst concentration of 1.5 g/L, an Н2О2 concentration of 5 mM, and an initial CR dye concentration of 5 mg/L, at reaction rate constant of 2.1959 min-1.


T. Tatarchuk, N. Danyliuk, A. Shyichuk, W. Macyk, M. Naushad, Photocatalytic degradation of dyes using rutile TiO2 synthesized by reverse micelle and low temperature methods: real-time monitoring of the degradation kinetics, J. Mol. Liq., 342, 117407 (2021);

K. Indira, S. Shanmugam, A. Hari, S. Vasantharaj, S. Sathiyavimal, K. Brindhadevi, A. El Askary, A. Elfasakhany, A. Pugazhendhi, Photocatalytic degradation of congo red dye using nickel–titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract, Environ. Res., 202, 111647 (2021);

J. Wang, Y. Jiang, Z. Zhang, G. Zhao, G. Zhang, T. Ma, W. Sun, Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors, Desalination, 216, 196 (2007);

T. Tatarchuk, A. Shyichuk, Z. Sojka, J. Gryboś, M. Naushad, V. Kotsyubynsky, M. Kowalska, S. Kwiatkowska-Marks, N. Danyliuk, Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications, J. Mol. Liq., 328, 115375 (2021);

I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, Sodium-modified mesoporous TiO2: Sol-gel synthesis, characterization and adsorption activity toward heavy metal cations, J. Mol. Liq., 316, 113840 (2020);

S. Foteinis, E. Chatzisymeon, Heterogeneous photocatalysis for water purification, INC, 2020.

Z. Wei, J. Liu, W. Shangguan, A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production, Chinese J. Catal., 4, 1440 (2020);

M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza, Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment, Sol. Energy, 135 (2016) 527–535.

M. Curti, D.W. Bahnemann, C.B. Mendive, Mechanisms in Heterogeneous Photocatalysis: Titania under UV and Visible Light Illumination, Elsevier Ltd., 2016;

H. Chakhtouna, H. Benzeid, N. Zari, A. el kacem Qaiss, R. Bouhfid, Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors, Environ. Sci. Pollut. Res., 28 44638 (2021);

G. Sujatha, S. Shanthakumar, F. Chiampo, UV light‐irradiated photocatalytic degradation of coffee processing wastewater using TiO2 as a catalyst, Environ, 7, 1 (2020);

P. Billik, G. Plesch, V. Brezová, L. Kuchta, M. Valko, M. Mazúr, Anatase TiO2 nanocrystals prepared by mechanochemical synthesis and their photochemical activity studied by EPR spectroscopy, J. Phys. Chem. Solids, 68, 1112 (2007),

A. Dodd, A. McKinley, T. Tsuzuki, M. Saunders, Optical and photocatalytic properties of nanocrystalline TiO2 synthesised by solid-state chemical reaction, J. Phys. Chem. Solids, 68, 2341 (2007);

H.D. Jang, S.K. Kim, S.J. Kim, Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties, J. Nanoparticle Res., 3 (2001) 141–147.

H. Park, H.S. Jie, B. Neppolian, K. Tsujimaru, J.P. Ahn, D.Y. Lee, J.K. Park, M. Anpo, Preparation of highly active TiO2 nano-particle photocatalysts by a flame aerosol method for the complete oxidation of 2-propanol, Top. Catal., 47, 166 (2008);

G.L. Chiarello, E. Selli, L. Forni, Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2, Appl. Catal. B Environ., 84, 332 (2008);

V.M. Gun’ko, V.V. Turov, Nuclear magnetic resonance studies of interfacial phenomena, CRC Press. Boca Rat. (2013).

A. Singh, S. Kumar, Structural, chemical, optical and photocatalytic properties of Zr co-doped anatase-rutile mixed phase TiO2: Ag nanoparticles, J. Alloys Compd., 925, 166709 (2022);

M.Z. Bin Mukhlish, F. Najnin, M.M. Rahman, M.J. Uddin, Photocatalytic Degradation of Different Dyes Using TiO2 with High Surface Area: A Kinetic Study, J. Sci. Res., 5 301–314 (2013);

A. Golub, A. Tyshchenko, I. Kokot, Investigation of the solubility of Ti(OH)4 in chlorine and hydrochloric acids, Journal of Applied Chemistry, XLIII, 2129–2134 (1970).

L.I. Myronyuk, I.F. Myronyuk, V.L. Chelyadyn, V.M. Sachko, M.A. Nazarkovsky, R. Leboda, J. Skubiszewska-Ziȩba, V.M. Gun’ko, Structural and morphological features of crystalline nanotitania synthesized in different aqueous media, Chem. Phys. Lett., 583 (2013) 103–108.

G. Busca, G. Ramis, J.M.G. Amores, V.S. Escribano, P. Piaggio, FT Raman and FTIR studies of titanias and metatitanate powders, J. Chem. Soc. Faraday Trans., 90 (1994) 3181–3190.

R.J. Gonzalez, Raman, X-ray, and EELS Studies of Nanophase Titania, Thesis. (1996).

V.A. Frink-Kamenetsky, Essays on crystal chemistry, Chemistry. (1974) 496.

М. Bairamov, Fundamental electrochemistry, Academia. (2005).

A.R. West, Solid state chemistry and its applications, 1991.

M.D. Bleši, Z. V. Šaponji, J.M. Nedeljkovi, D.P. Uskokovi, TiO2 films prepared by ultrasonic spray pyrolysis of nanosize precursor, Mater. Lett., 54, 298 (2002);

W.L. Guo, X.K. Wang, Z.M. Lin, G.Z. Song, Sonochemical Synthesis of Nanocrystalline TiO2 by Hydrolysis of Titanium Alkoxides, Microelectron. Eng., 66, 95 (2003);

W. Huang, X. Tang, Y. Wang, Y. Koltypin, A. Gedanken, Selective synthesis of anatase and rutile via ultrasound irradiation, Chem. Commun., 1415 (2000);

S. Erdemoǧlu, S.K. Aksu, F. Sayilkan, B. Izgi, M. Asiltürk, H. Sayilkan, F. Frimmel, Ş. Güçer, Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS, J. Hazard. Mater., 155, 469 (2008);

N. Danyliuk, T. Tatarchuk, K. Kannan, A. Shyichuk, Optimization of TiO2-P25 photocatalyst dose and H2O2 concentration for advanced photooxidation using smartphone-based colorimetry, Water Sci. Technol., 84, 469 (2021);

H.X. Guo, K.L. Lin, Z.S. Zheng, F. Bin Xiao, S.X. Li, Sulfanilic acid-modified P25-TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light, Dye. Pigment, 92, 1278 (2012);

I. Mironyuk, N. Danyliuk, T. Tatarchuk, I. Mykytyn, V. Kotsyubynsky, Photocatalytic degradation of Congo red dye using Fe-doped TiO2 nanocatalysts, Phys. Chem. Solid State, 22, 697 (2021);

U.O. Bhagwat, J.J. Wu, A.M. Asiri, S. Anandan, Sonochemical Synthesis of Mg-TiO2 nanoparticles for persistent Congo red dye degradation, J. Photochem. Photobiol. A Chem., 346, 559 (2017);

C.M. Magdalane, G.M.A. Priyadharsini, K. Kaviyarasu, A.I. Jothi, G.G. Simiyon, Synthesis and characterization of TiO2 doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of congo red degradation dye, Surfaces and Interfaces, 25, 101296 (2021);

How to Cite
MironyukI., DanyliukN., TurovskaL., & MykytynI. (2022). Structural, morphological and photocatalytic properties of TiO2 obtained by thermolytic decomposition of the [Ti(OH2)6]3+•3Cl¯ aquacomplex. Physics and Chemistry of Solid State, 23(4), 741-755.
Scientific articles (Chemistry)