Adsorption of Barium and Zinc Ions by Mesoporous TiO2 with Chemosorbed Carbonate Groups
DOI:
https://doi.org/10.15330/pcss.20.3.282-290Keywords:
mesoporous TiO2, adsorption, zinc, bariumAbstract
In the present paper the mesoporous TiO2 with chemosorbed carbonate groups was investigated as an adsorbent for the removal of Zn2+ and Ba2+ cations from aqueous solutions. The dependence of the adsorption values of Zn2+ and Ba2+ on the agitation time, solution’s acidity, and modification of surface of TiO2 was determined. The process of Zn2+ and Ba2+ adsorption fit well by Lagergren’s pseudo-second-order kinetic model. The equilibrium adsorption was investigated in the concentration of heavy metal’s ranges 27.46 mg/L - 7809 mg/L. The experimental data was approximated by Langmuir and DubininRadushcevich adsorption theories. The energy of adsorption Zn2+ and Ba2+ onto modified TiO2 and unmodified TiO2 was calculated using Dubinin-Radushkevich equations, and was found to be 15.82 - 9.399 kJ/mol, which corresponds to the mechanism of physical adsorption. The application of Langmuir theory to experimental adsorption data gives high R2, close to unit. Separation factor RL indicates, that adsorption Zn2+ and Ba2+ onto modified TiO2 is very favorable. Modified mesoporous ТіО2 is very efficient adsorbent toward Zn2+ and Ba2+ cations from their individual solutions as well as from their mixture, and able to compete with the best world analogues.
References
Aditya Rageev. Kaveshwar at all. Journal of cleaner production 193, 1 (2018) (https://dio.org/10.1016/j.clepro.2018.05.041).
J. M. Lacob, Ch. Karthik, R. Ganes Saratale at all. Journal of Environmental Management 217, 56 (2018) (https://dio.org/10.1016/j.jenvman.2018.03.077).
Eveliina Muuri. The sorption and diffusion of 133Ba in granitic rocks. (Master’s thesis University of Helsinki Faculty of Science Department of Chemistry Laboratory of Radiochemistry, 2015).
T. R. De Gardo, Mu. K.Pandey, J. F.Byrne, H. P.Engensbercht at all. Nucl. Med. August 55(8), 1348 (2014) (https://dio.org.10.2967/jnumed.114.141218).
J.W. Engle, V. Loper-Rodrigues, R.E. Gaspar-Carcamo, H.F. Valdovinos, M. Valle-Gonzalez at all., Appl. Radiat. Isot: 70(8), 1792 (2012) (https://doi.org.10.1016/j.apradiso.2012.03.030).
Phoebe Zito Ray, Heather J. Shipley. RSC Advances 5 (2015) (https://doi.10.1039/c5ra02714d).
E.A. Abdel-Galila, H. Moloukhiaa, M. Abdel-Khalikb, Sara S. Mahrou, Applied radiation and isotopes 140, 363 (2018) (https://doi.org/10.1016/j.apradiso.2018.07.022).
J. Anastopoulos, A. Mittal, M. Usman, J. Mittal at all, Journal of moleqular liquids 269, 855 (2018) (https://doi.org/10.1016/j.molliq.2018.08.104).
A. Kayyvani Fard, G. McKay, R. Chamoun at all, Chemical engineering journal (317), 331 (2017) (https://doi.org/10.1016/j.cej.2017.02.090).
M. Karanas, M.B. Dolich, D. Velijovich, V.N. Rajakovich-Ognjianovich at all, Waste Management 78, 366 (2018) (https://doi.org/10.1016/j.wasman.2018.05.052).
L. Giraldo, A. Erto, J.C. Moreno-Piraja ´n, Adsorption 19, 465 (2013) (https://www.doi.org//10.1007/s10450-012-9468-1).
U. Kouakou, A.S. Ello, J. Aboua Yapo, A. Trokourey, Journal of Environmental Chemistry and Ecotoxicology 5(6), 168 (2013) (https://www.doi.org//10.5897/JECE2013.0264)
D.A. Gkika, E.V. Liakos, N. Vordos, Ch. Kontogoulidou, L. Magafas, D.N. Bikiaris, D.V. Bandekas, A.C. Mitropoulos, G.Z. Kyzas, Polymers 11, 925 (2019) (https://www.doi.org/10.3390/polym11050925).
H.N. Tran, H.Ch. Nguyen, S.H. Woo, T.V. Nguyen, S. Vigneswaran, A. Hosseini-Bandegharaei, J. Rinklebe, A.K. Sarmah, A. Ivanets, G.L. Dotto, T.T. Bui, R.-S. Juang, H.-P. Chao, Critical Reviews in Environmental Science and Technology, (2019) (https://www.doi.org:10.1080/10643389.2019.1607442. To link to this article: https://doi.org/10.1080/10643389.2019.1607442).
G. Shipra Mital, T. Manoj, Review Chinese Science Bulletin Physical Chemistry 56(16), 1639 (2011) (https://www.doi.org//10.1007/s11434-011-4476-1).
L.I. Myronyuk, I.F. Myronyuk, V.L. Chelyadyn, V.M. Sachko, M.A. Nazarkovsky, R. Leboda, J. Skubiszewska-Zięba, V.M. Gun’ko, Chem. Phys. Lett. 583, 103 (2013) (https://doi:10.1016/J.CPLETT.2013.07.068).
I. Mironyuk, T. Tatarchuk, Mu. Naushad, H. Vasylyeva, I. Mykytyn, Journal of Molecular Liquids 285, 742 (2019) (https://doi.org/10.1016/j.molliq.2019.04.111).
K.M. Mackay, R.A. Mackay, W. Henderson, Introduction to modern inorganic chemistry 5th edition, (Blackie Academic and professional, and imprint of Chapman and Hall, 2-6 Boundary Row, London SE1 8NH, UK, 1996, ISBN 0751403733).
J.P. Birk, Characteristic Reactions of Barium (Ba2+) Libre texts (https://status.libretexts.org).
H.N. Tran, S.-J. You at all, Water Res. 120, 88 (2017) (https://doi.org/10.1016/j.waters.2017.04.014).
A.W. Adamson, Physical Chemistry of Surfaces. (Third edition. Мир, Москва, 1979).
H.N. Tran, S.-J. You, H.P. Chao, J. Environ. Manag. 188, 322 (2017).
H.N. Tran, S.-J. You, H.P. Waste, Manag. Res. 34(2), 129 (2015).
G. Zhao, X. Wu, X. Tan, X. Wang, The Open Colloid Science Journal 4, 19 (2011).
Atlas of Eh-pH diagrams Inter comparison of thermodynamic databases Geological Survey of Japan Open File Report No.419.
M. Karanas, M. B. Dolich, D. Velijovich, V.N. Rajakovich-Ognjianovich at all, Waste Management 78, 366 (2018) (https://doi.org/10.1016/j.wasman.2018.05.052).
A.Q. Selim, L. Sellaoui, S.A. Ahmed, M. Mobarak, E.A. Mohamed, A. Ben Lamine, A. Erto, A. BonillaPetriciolet Moaaz K. Seliem 7(4), 103 (2019) (https://doi.org/10.1016/j.jece.2019.103217).
I.F. Mironyuk, V.M. Gun’ko, H.V. Vasylyeva, O.V. Goncharuk, T.R. Tatarchuk, V.I. Mandzyuk, N.A. Bezruka, T.V. Dmytrotsa, Microporous Mesoporous Mater. 277, 95 (2019). (https://doi.org:10.1016/J.MICROMESO.2018.10.016).