Manufacturing of nitinol-based alloys by using modern technology: A short review

Authors

  • Chingiz Imamalizade Azerbaijan State Oil and Industry University, Baku, Azerbaijan

DOI:

https://doi.org/10.15330/pcss.24.2.341-347

Keywords:

shape memory alloys, nitinol and alloys based on it, machine learning, microstructure, thermomechanical behavior

Abstract

The paper provides a brief review of literature data on the synthesis, processing, structure, mechanical properties, and application of nitinol and alloys based on it, which are promising functional materials found application in a number of high technologies. In addition, machine learning methods were applied to predict the temperatures of phase transformations.

References

Shape Memory Alloy Engineering For Aerospace, Structural, and Biomedical Applications. 2d Edition. Ed.: A.Concilio, V.Antonucci, F.Auricchio, L.Lecce, E. Sacco, 934 (2021).

A. Wadood, Brief Overview on Nitinol as Biomaterial, Advances in Materials Science and Engineering., 4173138 (2016); https://doi.org/10.1155/2016/4173138.

J.J. Mohd, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design, 56, 1078 (2014); https://doi.org/10.1016/j.matdes.2013.11.084.

D. Kapoor. Nitinol for Medical Applications: A Brief Introduction to the Properties and Processing of Nickel Titanium Shape Memory Alloys and their Use in Stents, Johnson Matthey Technology Review, 61(1), 66 (2017); http://dx.doi.org/10.1595/205651317X694524.

T. Ikeda, The use of shape memory alloys (SMAs) in aerospace engineering. Shape Memory and Superelastic Alloys, Applications and Technologies. Woodhead Publishing Series in Metals and Surface Engineering, 125, (2011); https://doi.org/10.1533/9780857092625.2.125.

M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: A reviews, Progress in Materials Science. Sci., 57(5), 911 (2012); https://doi.org/10.1016/j.pmatsci.2011.11.001.

W.J. Song, S.G. Choi, E.-S. Lee, Prediction and Comparison of Electrochemical Machining on Shape Memory Alloy(SMA) using Deep Neural Network(DNN), Journal of Electrochemical Science and Technology, 10(3), 276 (2019); https://doi.org/10.33961/jecst.2019.03174.

A.W. Young, R.W. Wheeler, N.A. Ley, O. Benafan, M.L.Young, Microstructural and Thermomechanical Comparison of Ni-Rich and Ni-Lean NiTi-20 at.% Hf High Temperature Shape Memory Alloy Wires, Shape Memory and Superelasticity, 5, 397 (2019); https://doi.org/10.1007/s40830-019-00255-0.

D.E. Nicholson, O. Benafan, S.A. Padula, B.Clausen, R.Vaidynathan, Loading Path and Control Mode Effects During Thermomechanical Cycling of Polycrystalline Shape Memory NiTi, Shape Memory and Superelasticity, 4, 143 (2018); https://doi.org/10.1007/s40830-017-0136-x.

O. Benafan, R.D. Noebe, S.A. Padula, D.J. Gaydosh, B.A. Lerch, A.Garg, R. Vaidyanathan, Temperature-dependent behavior of a polycrystalline NiTi shape memory alloy around the transformation regime, Scripta Materialia., 68(8), 571 (2013); https://doi.org/10.1016/j.scriptamat.2012.11.042.

S. Manchiraju, D. Gaydosh, O. Benafan, R. Noebe, R. Vaidyanathan, Thermal cycling and isothermal deformation response of polycrystalline NiTi: Simulations vs. experiment, Acta Materialia, 59 (13), 5238 (2011); https://doi.org/10.1016/j.actamat.2011.04.063.

O. Benafan, A. Garg, R.D. Noebe, H.D. Skorpenske, K. An, N. Schell, Deformation characteristics of the intermetallic alloy 60NiTi, Intermetallics, 82, 40 (2017); https://doi.org/10.1016/j.intermet.2016.11.003.

K. Safaei, M. Nematollahi, P. Bayati, H. Dabbaghi, O. Benafan, M. Elahinia, Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes, Engineering Structures, 226, 111383 (2021); https://doi.org/10.1016/j.engstruct.2020.111383.

M. Nematollahi, G. Toker, S.E. Saghaian, J. Salazar, M. Mahtabi, O. Benafan, Additive manufacturing of Ni-rich nitihf 20: Manufacturability, composition, density, and transformation behavior, Shape Memory and Superelasticity, 5 (1), 113-124 (2019); https://doi.org/10.1007/s40830-019-00214-9.

M. Elahinia, N.S. Moghaddam, A. Amerinatanzi, S. Saedi, G.P. Toker, Additive manufacturing of NiTiHf high temperature shape memory alloy, Scripta Materialia, 145, 90 (2018); https://doi.org/10.1016/j.scriptamat.2017.10.016.

G.S. Bigelow, A. Garg, O. Benafan, R.D. Noebe, S.A. Padula II, D.J. Gaydosh, Development and testing of a Ni50.5Ti27.2Hf22. 3 high temperature shape memory alloy, Materialia, 21, 101297 (2022); https://doi.org/10.1016/j.mtla.2021.101297.

O. Karakoc, K.C. Atli, O. Benafan, R.D. Noebe, I. Karaman, Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys, Materials Science and Engineering, 829, 142154 (2022); https://doi.org/10.1016/j.msea.2021.142154.

D.E. Nicholson, S.A. Padula II, R.D. Noebe, O. Benafan, R. Vaidyanathan, Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs, Smart materials and structures 23(12), 125009 (2014); http://iopscience.iop.org/0964-1726/23/12/125009.

D. Xue, D. Xue, R.Yuan, Y. Zhou, P.V. Balachandran, X. Ding, J. Sun, T. Lookman, An informatics approach to transformation temperatures of NiTi based shape memory alloys, Acta Materialia, 125, 532 (2017); https://doi.org/10.1016/j.actamat.2016.12.009.

J. Wei, X. Chu, X. Sun, K. Xu, H. Deng, J. Chen, J., Z. Wei, M. Lei, Machine learning in materials science, InfoMat, 1(3), 338 (2019); https://doi.org/10.1002/inf2.12028.

A. Agrawal, A. Choudhary, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science, APL Mater., 4, 053208 (2016); https://doi.org/10.1063/1.4946894.

S. Liu, B.B. Kappes, B.A. Ahmadi, Physics-informed machine learning for composition –process –property design: Shape memory alloy demonstration, Applied Materials Today, 22, 100898 (2021); https://doi.org/10.1016/j.apmt.2020.100898.

H. Abedi, K.S. Baghbaderani, A. Alafghani, Neural Network Modeling of NiTiHf Shape Memory Alloy Transformation Temperatures, Research Squrae, 1 (2021); https://doi.org/10.21203/rs.3.rs-952869/v1.

R. A. Aliev, J. Kacprzyk, W. Pedrycz, M. Jamshidi, M. Babanli, & F. M. Sadikoglu (Eds.). 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing – ICAFS-2020. Advances in Intelligent Systems and Computing. (Budva, Montenegro, 2021), p.467–471. https://doi.org/10.1007/978-3-030-64058-3_58.

A.O. Kabil, Y. Kaynak, H. Saruhan, O. Benafan, Multi-objective Optimization of Cutting Parameters for Machining Process of Ni-Rich NiTiHf High-Temperature Shape Memory Alloy Using Genetic Algorithm, Shape Memory and Superelasticity, 7, 270 (2021); https://doi.org/10.1007/s40830-021-00328-z.

S. Li, N.J.E. Adkins, S. McCain, M.M. Attallah, Suspended droplet alloying: A new method for combinatorial alloy synthesis; Nitinolbased alloys as an example, Journal of Alloys and Compounds., 768, 392 (2018); https://doi.org/10.1016/j.jallcom.2018.07.260.

O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, R.B. Rogers, Processing and Scalability of NiTiHf High-Temperature Shape Memory Alloys, Shape Memory and Superelasticity, 7(1), 109 (2021); https://doi.org/10.1007/s40830-020-00306-x.

G.P. Toker, M. Nematollahi, S.E. Saghaian, K.S. Baghbaderani, O. Benafan, Shape memory behavior of NiTiHf alloys fabricated by selective laser melting, Scripta Materialia, 178, 361 (2020); https://doi.org/10.1016/j.scriptamat.2019.11.056.

O. Benafan, G.S. Bigelow, D.A. Scheiman, Transformation behavior in NiTi-20Hf shape memory alloys – Transformation temperatures and hardness, Scripta Materialia, 146, 251 (2018); https://doi.org/10.1016/j.scriptamat.2017.11.050.

M. Nematollahi, G.P. Toker, K. Safaei, A. Hinojos, S.E. Saghaian, O. Benafan, Laser Powder Bed Fusion of NiTiHf High-Temperature Shape Memory Alloy: Effect of Process Parameters on the Thermomechanical Behavior, Metals, 10(11), 1522 (2020); https://doi.org/10.3390/met10111522.

N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, I. Karaman, Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy Acta Materialia, 157, 228 (2018); https://doi.org/10.1016/j.actamat.2018.07.009.

B. Amin-Ahmadi, T. Gallmeyer, J.G. Pauza, T.W. Duerig, R.D. Noebe, A.P. Stebner, Effect of a pre-aging treatment on the mechanical behaviors of Ni50.3Ti49.7-xHfx (x ≤9 at. %) shape memory alloys, Scripta Materialia, 147, 11 (2018); https://doi.org/10.1016/j.scriptamat.2017.12.024.

M. Moshref-Javadi, S.H. Seyedein, M.T. Salehi, M.R. Aboutalebi, Age-induced multi-stage transformation in a Ni-rich NiTiHf alloy, Acta Materialia, 61(7), 2583 (2013); https://doi.org/10.1016/j.actamat.2013.01.037.

J.P. Oliveira, N. Schell, N. Zhou, L. Wood, O. Benafan, Laser welding of precipitation strengthened Ni-rich NiTiHf high temperature shape memory alloys: Microstructure and mechanical properties, Materials & Design, 162, 229 (2019); https://doi.org/10.1016/j.matdes.2018.11.053.

G.S. Bigelow, O. Benafan, A. Garg, R.D. Noebe, Effect of Hf/Zr ratio on shape memory properties of high temperature Ni50.3Ti29.7 (Hf, Zr)20 alloys, Scripta Materialia, 194, 113623 (2021); https://doi.org/10.1016/j.scriptamat.2020.11.008.

G.S. Bigelow, O. Benafan, A. Garg, R. Lundberg, R.D. Noebe, Effect of Composition and Applied Stress on the Transformation Behavior in NixTi80- x Zr20 Shape Memory Alloys, Shape Memory and Superelasticity,, 5 (4), 444 (2019); https://doi.org/10.1007/s40830-019-00259-w.

N.A. Ley, R.W. Wheeler, O. Benafan, M.L. Young, Characterization of Thermomechanically Processed High-Temperature Ni-Lean NiTi–20 at.% Hf Shape Memory Wires, Shape Memory and Superelasticity. 5, 476 (2019); https://doi.org/10.1007/s40830-019-00254-1.

P.S. Chaugule, O. Benafan, J.B. le Graverend, Phase transformation and viscoplasticity coupling in polycrystalline nickel titanium-hafnium high-temperature shape memory alloys Acta Materialia, 221, 117381 (2021); https://doi.org/10.1016/j.actamat.2021.117381.

O. Benafan, G.S. Bigelow, D.A. Scheiman, Transformation behavior in NiTi-20Hf shape memory alloys Transformation temperatures and hardness, Scripta Materialia, 146, 251 (2018); https://doi.org/10.1016/j.scriptamat.2017.11.050.

N. Zarkevich, O. Benafan, J. Lawson, Controlling properties by chemistry in doped shape memory alloys, APS March Meeting, abstract id.S41.006 (2021).

L. Han, K.K. Song , L.M. Zhang, H. Xing, B. Sarac, F. Spieckermann, T. Maity, M. Muhlbacher, L. Wang, I. Kaban, and J. Eckert, Microstructures, Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys, Journal of Materials Engineering and Performance, 27, 1005 (2018) https://doi.org/10.1007/s11665-018-3209-x.

S.M. Kornegay, M. Kapoor, B.C. Hornbuckle, D. Tweddle, M.L. Weaver, O. Benafan, G. Bigelow, R. Noebe, G. Thompson, Influence of H-phase precipitation on the microstructure and functional and mechanical properties in a Ni-rich NiTiZr shape memory alloy, Materials Science and Engineering: A., 801, 140401 (2021); https://doi.org/10.1016/j.msea.2020.140401.

J.P. Oliveira, J. Shen, J.D. Escobar, C.A.F. Salvador, N. Schell, N. Zhou, Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloy, Materials & Design, 202, 109533 (2021); https://doi.org/10.1016/j.matdes.2021.109533.

N.N. Kuranova, A.V. Pushin, V.G. Pushin, N.I.Z. Kourov, Structure and Thermoelastic Martensitic Transformations in Ternary Ni–Ti–Zr Alloys with High-Temperature Shape Memory Effects, Physics of Metals and Metallography, 119, 582 (2018); https://doi.org/10.1134/S0031918X18060091.

A. N. Titenko, L. D. Demchenko, M. B. Babanli,I. V. Sharai, Ya. А. Titenko, Effect of thermomechanical treatment on deformational behavior of ferromagnetic Fe–Ni–Co–Ti alloy under uniaxial tension, Applied Nanoscience, 9, 937 (2019); https://doi.org/10.1007/s13204-019-00971-0.

O Benafan, R.D. Noebe, S.A. Padula II, D.W. Brown, S. Vogel, Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution, International Journal of Plasticity, 56, 99 (2014); https://doi.org/10.1016/j.ijplas.2014.01.006.

O. Benafan, G.S. Bigelow, A. Garg, Thermomechanical Behavior of NiTi-8Hf Low-Temperature Shape Memory Alloys, Shape Memory and Superelasticity, 7, 314 (2021); https://doi.org/10.1007/s40830-021-00325-2.

O. Karakoc, K.C. Atli, A. Evirgen, J. Pons, R. Santamarta, O. Benafan, R. Noebe, I. Karaman, Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys, Materials Science and Engineering: A., 794(5), 139857 (2020); https://doi.org/10.1016/j.msea.2020.139857.

O. Benafan, A. Garg, R.D. Noebe, G.S. Bigelow, S.A. Padula II, D.J. Gaydosh, N. Schell, J.H. Mabe, R. Vaidyanathan, Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy, Intermetallics, 50, 94 (2014); https://doi.org/10.1016/j.intermet.2014.02.006.

H.E. Karaca, S.M. Saghaian ,G. Ded , H. Tobe, B. Basaran , H.J. Maier , R.D. Noebe , Y.I. Chumlyakov, Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy, Acta Materialia, 61(19), 7422 (2013); https://doi.org/10.1016/j.actamat.2013.08.048.

O. Benafan, D.J. Gaydosh, Machined helical springs from NiTiHf shape memory alloy ,Smart Materials and Structures., 29(12), 125001(2020); https://doi.org/10.1088/1361-665X/abbec9.

K.E. Kirmacioglu, Y. Kaynak, O. Benafan, Machinability of Ni-rich NiTiHf high temperature shape memory alloy, Smart Materials and Structures., 28(5), 055008(2019); https://doi.org/10.1088/1361-665X/ab02a2.

O. Benafan, D.J. Gaydosh, Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29. 7Hf20 torque tubes, Smart Materials and Structures, 27(7), 075035 (2018); https://doi.org/10.1088/1361-665X/aac665.

O. Benafan, R.D. Noebe, T.J. Halsmer, S.A. Padula, G.S. Bigelow, G.J. Gaydosh, A. Garg, Constant-Strain Thermal Cycling of a Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy. Shape Memory and Superelasticity, 2, 218 (2016); https://doi.org/10.1007/s40830-016-0068-x.

Downloads

Published

2023-06-25

How to Cite

Imamalizade, C. (2023). Manufacturing of nitinol-based alloys by using modern technology: A short review. Physics and Chemistry of Solid State, 24(2), 341–347. https://doi.org/10.15330/pcss.24.2.341-347

Issue

Section

Scientific articles (Technology)