Effect of the crystal structure and chemical bonding on the electronic and thermal transport in Cu2MeHf3S8 (Me – Mn, Fe, Co, Ni) thiospinels


  • Oleksandr Smitiukh Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • Oksana Soroka Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • Oleg Marchuk Lesya Ukrainka Volyn National University, Lutsk, Ukraine




bonding inhomogeneity, crystal structure, weighted mobility, thermal conductivity, quaternary sulfides


Establishing the relationship between crystal structure and transport properties is an important issue that is directly connected with the applicability of functional materials. In this work, we present the analysis of the crystal structure, chemical bonding, and electronic and thermal transport properties of Cu2МеHf3S8 (Ме – Mn, Fe, Co, Ni) compounds. The increase of weighted mobility in the Mn → Fe → Со → Ni series as well as the change of the dominant scattering mechanism of charge carriers from scattering on point defects to the scattering on acoustic phonons explains the best electronic transport in Cu2NiHf3S8. Moreover, bonding inhomogeneity between the covalent δ(Co – S) and δ(Hf – S) from one side, and more ionic δ(Cu – S) interactions from the other side leads to low lattice thermal conductivity in Cu2MeHf3S8 (Me – Mn, Fe, Co, Ni) materials. The work also suggests the link between the occupation of the octahedral 16d site and the thermoelectric performance of the investigated thiospinels. Particularly, the best thermoelectric performance is observed in the case of the presence of two valence electrons in the d-level of atoms in octahedral voids, which can be essential for further enhancement of the thermoelectric performance in thiospinels.


Z. Chen, X. Zhang, Y. Pei, Manipulation of Phonon Transport in Thermoelectrics, Adv. Mater., 30, 1705617 (2018); https://doi.org/10.1002/adma.201705617.

K. Zhao, P. Qiu, X. Shi, L. Chen, Recent Advances in Liquid‐Like Thermoelectric Materials, Adv. Funct. Mater., 30, 1903867 (2020); https://doi.org/10.1002/adfm.201903867.

T. Ghosh, M. Dutta, D. Sarkar, K. Biswas, Insights into Low Thermal Conductivity in Inorganic Materials for Thermoelectrics, J. Am. Chem. Soc., 144, 10099 (2022); https://doi.org/10.1021/JACS.2C02017/ASSET/IMAGES/LARGE/JA2C02017_0008.JPEG.

R.A. Miller, Thermal barrier coatings for aircraft engines: History and directions, J. Therm. Spray Technol., 6, 35 (1997); https://doi.org/10.1007/BF02646310/METRICS.

O. Cherniushok, R. Cardoso-Gil, T. Parashchuk, R. Knura, Y. Grin, K.T. Wojciechowski, Lone-Pair-Like Interaction and Bonding Inhomogeneity Induce Ultralow Lattice Thermal Conductivity in Filled β-Manganese-Type Phases, Chem. Mater. 34, 6389 (2022); https://doi.org/10.1021/acs.chemmater.2c00915.

T. Parashchuk, A. Shabaldin, O. Cherniushok, P. Konstantinov, I. Horichok, A. Burkov, Z. Dashevsky, Origins of the enhanced thermoelectric performance for p-type Ge1-xPbxTe alloys, Phys. B Condens. Matter. 596, 412397(2020); https://doi.org/10.1016/J.PHYSB.2020.412397.

T. Parashchuk, B. Wiendlocha, O. Cherniushok, R. Knura, K.T. Wojciechowski, High Thermoelectric Performance of p-Type PbTe Enabled by the Synergy of Resonance Scattering and Lattice Softening, ACS Appl. Mater. Interfaces, 13, 49027 (2021); https://doi.org/10.1021/acsami.1c14236.

T. Parashchuk, R. Knura, O. Cherniushok, K.T. Wojciechowski, Ultralow Lattice Thermal Conductivity and Improved Thermoelectric Performance in Cl-Doped Bi2Te3–xSex Alloys, ACS Appl. Mater. Interfaces. 14, 33567 (2022); https://doi.org/10.1021/acsami.2c08686.

O. Cherniushok, O. V. Smitiukh, J. Tobola, R. Knura, O. V. Marchuk, T. Parashchuk, K.T. Wojciechowski, Crystal Structure and Thermoelectric Properties of Novel Quaternary Cu2MHf3S8(M-Mn, Fe, Co, and Ni) Thiospinels with Low Thermal Conductivity, Chem. Mater. 34, 2146 (2022); https://doi.org/10.1021/acs.chemmater.1c03593.

M. Maksymuk, K. Zazakowny, A. Lis, A. Kosonowski, T. Parashchuk, K.T. Wojciechowski, Development of the anodized aluminum substrates for thermoelectric energy converters, Ceram. Int. 49, 4816(2023); https://doi.org/10.1016/J.CERAMINT.2022.09.371.

W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, G.J. Snyder, Thinking Like a Chemist: Intuition in Thermoelectric Materials, Angew. Chemie Int. Ed. 55, 6826 (2016); https://doi.org/10.1002/ANIE.201508381.

O. Cherniushok, T. Parashchuk, J. Tobola, S.D.N. Luu, A. Pogodin, O. Kokhan, I. Studenyak, I. Barchiy, M. Piasecki, K.T. Wojciechowski, Entropy-Induced Multivalley Band Structures Improve Thermoelectric Performance in p-Cu7P(SxSe1- x)6Argyrodites, ACS Appl. Mater. Interfaces., 13, 39606 (2021); https://doi.org/10.1021/acsami.1c11193.

K. Zazakowny, A. Kosonowski, A. Lis, O. Cherniushok, T. Parashchuk, J. Tobola, K.T. Wojciechowski, Phase Analysis and Thermoelectric Properties of Cu-Rich Tetrahedrite Prepared by Solvothermal Synthesis, Materials (Basel)., 15, 849(2022); https://doi.org/10.3390/MA15030849.

J. Yang, Y. Wang, H. Yang, W. Tang, J. Yang, L. Chen, W. Zhang, Thermal transport in thermoelectric materials with chemical bond hierarchy, J. Phys. Condens. Matter., 31, 183002 (2019); https://doi.org/10.1088/1361-648X/AB03B6.

F. Kateusz, T. Korzec, M. Zambrzycki, O. Cherniushok, M. Gubernat, Influence of montmorillonite nanoparticles on thermal and mechanical properties of carbon-carbon hybrid composites based on phenolic-formaldehyde resin, Compos. Theory Pract., 2021, 96 (2021).

H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G. Snyder Jeffrey, Copper ion liquid-like thermoelectrics, Nat. Mater., 11, 422 (2012); https://doi.org/10.1038/nmat3273.

L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature., 508, 373 (2014); https://doi.org/10.1038/nature13184.

X.L. Shi, J. Zou, Z.G. Chen, Advanced Thermoelectric Design: From Materials and Structures to Devices, Chem. Rev., 120, 7399 (2020); https://doi.org/10.1021/acs.chemrev.0c00026.

E.J. Skoug, D.T. Morelli, Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds, Phys. Rev. Lett., 107, 235901(2011); https://doi.org/10.1103/PHYSREVLETT.107.235901/FIGURES/4/MEDIUM.

C. Chang, L.D. Zhao, Anharmoncity and low thermal conductivity in thermoelectrics, Mater. Today Phys., 4, 50 (2018); https://doi.org/10.1016/J.MTPHYS.2018.02.005.

O. V. Smitiukh, O. V. Marchuk, Y.M. Kogut, V.O. Yukhymchuk, N. V. Mazur, G.L. Myronchuk, S.M. Ponedelnyk, O.I. Cherniushok, T.O. Parashchuk, O.Y. Khyzhun, T. Wojciechowski, A.O. Fedorchuk, Effect of rare-earth doping on the structural and optical properties of the Ag3AsS3 crystals, Opt. Quantum Electron., 54, (2022); https://doi.org/10.1007/S11082-022-03542-W.

Y. Grin, Inhomogeneity and anisotropy of chemical bonding and thermoelectric properties of materials, J. Solid State Chem., 274, 329 (2019); https://doi.org/10.1016/J.JSSC.2018.12.055.

A. Ormeci, Y. Grin, Coexistence of ionic and covalent atomic interactions (bonding inhomogeneity) and thermoelectric properties of intermetallic clathrates, J. Thermoelectr., 6, 16 (2015).

M. Dutta, K. Pal, U. V. Waghmare, K. Biswas, Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe3, Chem. Sci., 10, 4905(2019); https://doi.org/10.1039/C9SC00485H.

F. Huiying, Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications, J. Mater. Chem. C., 6, 414 (2018).

F.T. Farheen F.Jaldurgam, Zubair Ahmad, Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications, Nanomaterials. 11, 895 (2021); https://doi.org/10.3390/nano11040895.

M.R. Huch, L.D. Gulay, I.D. Olekseyuk, Crystal structures of the R3Mg0.5GeS7 (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er) compounds, J. Alloys Compd., 424, 114 (2006); https://doi.org/10.1016/j.jallcom.2005.12.025.

L.D. Gulay, M. Daszkiewicz, M.R. Huch, A. Pietraszko, Ce3Mg0.5GeS7 from single-crystal data, Acta Crystallogr. Sect. E Struct. Reports Online. 63 (2007); https://doi.org/10.1107/S1600536807048593.

Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, G.J. Snyder, High thermoelectric performance in non-toxic earth-abundant copper sulfide, Adv. Mater., 26, 3974 (2014); https://doi.org/10.1002/adma.201400515.

R. Ang, A.U. Khan, N. Tsujii, K. Takai, R. Nakamura, T. Mori, Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent, Angew. Chemie - Int. Ed. 54, 12909 (2015); https://doi.org/10.1002/anie.201505517.

Y. Kim, S.-W. Kang, H.-U. Kim, al -, N. Kryzhanovskaya, A. Zhukov, E. Moiseev, D. Zhang, H.-C. Bai, Z.-L. Li, J.-L. Wang, G.-S. Fu, S.-F. Wang, Multinary diamond-like chalcogenides for promising thermoelectric application*, Chinese Phys. B., 27, 047206 (2018); https://doi.org/10.1088/1674-1056/27/4/047206.

S. Fiechter, M. Martinez, G. Schmidt, W. Henrion, Y. Tomm, Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S, J. Phys. Chem. Solids., 64,) 1859 (2003); https://doi.org/10.1016/S0022-3697(03)00172-0.

V. Pavan Kumar, P. Lemoine, V. Carnevali, G. Guélou, O.I. Lebedev, P. Boullay, B. Raveau, R. Al Rahal Al Orabi, M. Fornari, C. Prestipino, D. Menut, C. Candolfi, B. Malaman, J. Juraszek, E. Guilmeau, Ordered sphalerite derivative Cu5Sn2S7: a degenerate semiconductor with high carrier mobility in the Cu–Sn–S diagram, J. Mater. Chem. A., 9, 10812 (2021); https://doi.org/10.1039/D1TA01615F.

C. Bourgès, Y. Bouyrie, A.R. Supka, R. Al Rahal Al Orabi, P. Lemoine, O.I. Lebedev, M. Ohta, K. Suekuni, V. Nassif, V. Hardy, R. Daou, Y. Miyazaki, M. Fornari, E. Guilmeau, High-Performance Thermoelectric Bulk Colusite by Process Controlled Structural Disordering, J. Am. Chem. Soc., 140, 2186 (2018); https://doi.org/10.1021/jacs.7b11224.

R. Chetty, A. Bali, R.C. Mallik, Tetrahedrites as thermoelectric materials: An overview, J. Mater. Chem. C., 3, 12364 (2015); https://doi.org/10.1039/c5tc02537k.

S. Lin, W. Li, Y. Pei, Thermally insulative thermoelectric argyrodites, Mater. Today., 48, 198(2021); https://doi.org/10.1016/J.MATTOD.2021.01.007.

P. Lemoine, G. Guélou, B. Raveau, E. Guilmeau, Crystal Structure Classification of Copper-Based Sulfides as a Tool for the Design of Inorganic Functional Materials, Angew. Chemie Int. Ed., 61, e202108686 (2022); https://doi.org/10.1002/ANIE.202108686.

X. Shen, C.C. Yang, Y. Liu, G. Wang, H. Tan, Y.H. Tung, G. Wang, X. Lu, J. He, X. Zhou, High-Temperature Structural and Thermoelectric Study of Argyrodite Ag 8 GeSe 6, ACS Appl. Mater. Interfaces. 11, 2168 (2019); https://doi.org/10.1021/acsami.8b19819.

F. Baumer, T. Nilges, Phase Segregation of Polymorphic Solid Ion Conducting Cu7PSe6 during Thermoelectric Experiments, Zeitschrift Für Anorg. Und Allg. Chemie. 644, 1519(2018); https://doi.org/10.1002/ZAAC.201800108.

G. Strick, G. Eulenberger, H. Hahn, Über einige quaternäre Chalkogenide mit Spinellstruktur, ZAAC ‐ J. Inorg. Gen. Chem. 357, 338 (1968); https://doi.org/10.1002/zaac.19683570421.

J.J. Snyder, T. Caillat, J.P. Fleurial, Thermoelectric properties of chalcogenides with the spinel structure, Mater. Res. Innov., 5, 67 (2001); https://doi.org/10.1007/s100190100133.

L. Akselrud, Y. Grin, WinCSD: Software package for crystallographic calculations (Version 4), J. Appl. Crystallogr., 47, 803 (2014); https://doi.org/10.1107/S1600576714001058.

K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272 (2011); https://doi.org/10.1107/S0021889811038970/FULL.

The PC GAMESS/Firefly - REFERENCE, (n.d.).

G.M.J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J.E. Deustua, D.G. Fedorov, J.R. Gour, A.O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S.S. Leang, H. Li, W. Li, J.J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B.Q. Pham, P. Piecuch, D. Poole, S.R. Pruitt, A.P. Rendell, L.B. Roskop, K. Ruedenberg, T. Sattasathuchana, M.W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J.L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev, M.S. Gordon, Recent developments in the general atomic and molecular electronic structure system, J. Chem. Phys. 152, 154102 (2020); https://doi.org/10.1063/5.0005188.

I. V. Horichok, L.I. Nykyruy, T.O. Parashchuk, S.D. Bardashevska, M.P. Pylyponuk, Thermodynamics of defect subsystem in zinc telluride crystals, Mod. Phys. Lett. B., 30, (2016); https://doi.org/10.1142/S0217984916501724.

D. Freik, T. Parashchuk, B. Volochanska, Thermodynamic parameters of CdTe crystals in the cubic phase, J. Cryst. Growth., 402, 90 (2014); https://doi.org/10.1016/J.JCRYSGRO.2014.05.005.

Chemcraft - Graphical program for visualization of quantum chemistry computations, (n.d.).

G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Weighted Mobility, Adv. Mater. 32, 2001537 (2020); https://doi.org/10.1002/ADMA.202001537.

T. Parashchuk, I. Horichok, A. Kosonowski, O. Cherniushok, P. Wyzga, G. Cempura, A. Kruk, K.T. Wojciechowski, Insight into the transport properties and enhanced thermoelectric performance of n-type Pb1−xSbxTe, J. Alloys Compd., 860, 158355 (2021); https://doi.org/10.1016/J.JALLCOM.2020.158355.

Y. Lang, L. Pan, C. Chen, Y. Wang, Thermoelectric Properties of Thiospinel-Type CuCo2S4, J. Electron. Mater. 48, 4179 (2019); https://doi.org/10.1007/s11664-019-07182-x.




How to Cite

Smitiukh, O., Soroka, O., & Marchuk, O. (2023). Effect of the crystal structure and chemical bonding on the electronic and thermal transport in Cu2MeHf3S8 (Me – Mn, Fe, Co, Ni) thiospinels. Physics and Chemistry of Solid State, 24(2), 235–243. https://doi.org/10.15330/pcss.24.2.235-243



Scientific articles (Chemistry)