Features of technological synthesis and properties of ZnO-Cd based materials for photocatalytic applications. Review

Authors

  • R. I. Didus I.M. Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • D. V. Myroniuk I.M. Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • L. A. Myroniuk I.M. Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • A. I. Ievtushenko I.M. Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.2.219-234

Keywords:

zinc oxide, cadmium doping, morphology, nanostructures, optical properties, photocatalysis

Abstract

In this review, the current state of ZnO-Cd based materials for photocatalytic applications is summarized. Relevant technological synthesis methods such as pulsed laser deposition, magnetron sputtering, electrodeposition, sol-gel, metalorganic chemical vapor deposition, evaporating, spray pyrolysis, reflux are considered, and recent developments in effective and reproducible synthesis technology of nano- and microstructured zinc oxide, doped with cadmium and solid solutions of Zn1‑xCdxO for photodecomposition of organic pollutant molecules are discussed. The synthesis technology and level of Cd doping has a significant effect on the structure and morphology of zinc oxide and, as a result, on the optical and photocatalytic properties. The figures of merit, the theoretical limitations and rational control of the concentration of the cadmium alloying impurity is necessary to create a material with balanced optical properties and photocatalytic activity. Lastly, the importance of doping ZnO by isovalent Cd impurity significantly improves its photocatalytic properties due to a narrowing of the band gap, a decrease in the rate of recombination of electron-hole pairs, which increases the efficiency of spatial charge separation, the formation of active oxide radicals and an increase in the specific surface area. Thus, ZnO-Cd based materials are the most promising photocatalytic materials for organic pollutants.

References

O. E. Baibara, M.V. Radchenko, V.A. Karpyna, A.I. Ievtushenko, A Review of the Some Aspects for the Development of ZnO Based Photocatalysts for a Variety of Applications, Physics and Chemistry of Solid State, 22 (3), 585 (2021); https://doi.org/10.15330/pcss.22.3.585-594.

S. P. Hoffmann, C. Meier, T. Zentgraf, W.-G. Schmidt, H. Herrmann, Zinc-Oxide Based Photonic Crystal Membranes, University of Paderborn, (2018).

A. Antony, I. V. Kityk, G. Myronchuk, G. Sanjeev, V. C. Petwal, V. P. Verma, J. Dwivedi, A study of 8 meV e-beam on localized defect states in ZnO nanostructures and its role on photoluminescence and third harmonic generation, Journal Lumin, 207, 321 (2019); https://doi.org/10.1016/j.jlumin.2018.11.043.

A. Sevik, B. Coskun, M. Soylu, The effect of molar ratio on the photo-generated charge activity of ZnO–CdO composites, Eur. Phys. J., 135, 65 (2020); https://doi.org/10.1140/epjp/s13360-020-00129-w.

Rahman, Zinc oxide light-emitting diodes: a review, Opt. Eng., 58(1), 010901 (2019); https://doi.org/10.1117/1.OE.58.1.010901.

Y. J. Noh, J. G. Kim, S. S. Kim, H. K. Kim, S. I. Na, Efficient semitransparent perovskite solar cells with a novel indium zinc tin oxide top electrode grown by linear facing target sputtering, Journal of Power Sources. 437, 226894 (2019); https://doi.org/10.1016/j.jpowsour.2019.226894.

S. Golovynskyi, A. Ievtushenko, S. Mamykin, M. Dusheiko, I. Golovynska, O. Bykov, O. Olifan, D. Myroniuk, S. Tkach, J. Qu, High transparent and conductive undoped ZnO thin films deposited by reactive ion-beam sputtering, Vacuum, 153, 204 (2018); https://doi.org/10.1016/j.vacuum.2018.04.019.

M. Pirsaheb, H. Hossaini, N. Simin, A. Nahid, S. Behzad, K. Toba, Optimization of photocatalytic degradation of methyl orange using immobilized scoria-Ni/TiO2 nanoparticles, Journal of Nanostructure in Chemistry, 10, 143 (2020); https://doi.org/10.1007/s40097-020-00337-x.

V. Karpyna, A. Ievtushenko, O. Kolomys, O. Lytvyn, V. Strelchuk, V. Tkach, S. Starik, V. Baturin, O. Karpenko, Raman and Photoluminescence Study of Al,N‐Codoped ZnO Films Deposited at Oxygen‐Rich Conditions by Magnetron Sputtering, Phys. Status Solidi B., 257, 1900788 (2020); https://doi.org/10.1002/pssb.201900788.

A. Ievtushenko, O. Khyzhun, I. Shtepliuk, O. Bykov, R. Jakieła, S. Tkach, E. Kuzmenko, V. Baturin, O. Karpenko, O. Olifan, G. Lashkarev, X-Ray photoelectron spectroscopy study of highly-doped ZnO:Al,N films grown at O-rich conditions, Journal of Alloys and Compounds, 722, 683 (2017); https://doi.org/10.1016/j.jallcom.2017.06.169.

E. Mosquera, I. del Pozo, M. Morel, Structure and redshift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol-gel method, Journal of Solid State Chemistry, 203, 265 (2013); https://doi.org/10.1016/j.jssc.2013.08.025.

E. Ozugurlu, Cd-doped ZnO nanoparticles: An experimental and first-principles DFT studies, Journal of Alloys and Compounds, 861, 158620 (2020); https://doi.org/10.1016/j.jallcom.2021.158620.

I. Shtepliuk, G. Lashkarev, V. Khomyak, P. Marianchuk, P. Koreniuk, D. Myroniuk, V. Lazorenko, I. Timofeeva, Effects of Ar/O2 Gas Ratio on the Properties of the Zn0.9Cd0.1O Films Prepared by DC Reactive Magnetron Sputtering, Acta Physica Polonica A, 120, A-61 (2011); https://doi.org/10.12693/APhysPolA.120.A-61.

I.Shtepliuk, V.Khranovskyy, G.Lashkarev, V.Khomyak, V.Lazorenko, A.Ievtushenko, ... & R.Yakimova, Electrical properties of n-Zn0.94Cd0.06O/p-SiC heterostructures, Solid-State Electronics, 81, 72-77 (2013); https://doi.org/10.1016/j.sse.2013.01.015.

S.Y. Lee, Y. Li, J.S. Lee, J.K. Lee, M. Nastasi, S.A. Crooker, ... & J.S. Kang, Effects of chemical composition on the optical properties of Zn 1− x Cd x O thin films, Applied physics letters, 85(2), 218-220 (2004); https://doi.org/10.1063/1.1771810.

P.Misra, P. K. Sahoo, P. Tripathi, V. N. Kulkarni, R. V. Nandedkar, L. M. Kukreja, Sequential pulsed laser deposition of CdxZn1-xO alloy thin films for engineering ZnO band gap, Appl. Phys. A, 78, 37 (2004); https://doi.org/10.1007/s00339-003-2296-0.

L. N. Bai, B. J. Zheng, J. S. Lian, Q. Jiang, First-principles calculations of Cd-doped ZnO thin films deposited by pulse laser deposition, Solid State Sciences, 14, 698 (2012); https://doi.org/10.1016/j.solidstatesciences.2012.03.018.

S.Sharma, B. Saini, R. Kaur, M. Tomar, V. Gupta, A. Kapoor, Low resistivity of pulsed laser deposited CdxZn1-xO thin films, Ceramics International, 45, 1900 (2019); https://doi.org/10.1016/j.ceramint.2018.10.082.

S.Chen, Q. Li, I. Ferguson, T. Lin, L. Wan, Z. C. Feng, L. Zhu, Z. Ye, Spectroscopic ellipsometry studies on ZnCdO thin films with different Cd concentrations grown by pulsed laser deposition, Applied Surface Science, 42, 383 (2017); https://doi.org/10.1016/j.apsusc.2017.02.264.

M. Tortosa, M. Mollar, B. Mari, Synthesis of ZnCdO thin films by electrodeposition, Journal of Crystal Growth, 304, 97 (2007); https://doi.org/10.1016/j.jcrysgro.2007.02.010.

O. Lupan, T. Pauporté, L. Chow, G. Chai, B. Viana, V. V. Ursaki, E. Monaico , I. M. Tiginyanu, Comparative study of the ZnO and Zn1−xCdxO nanorod emitters hydrothermally synthesized and electrodeposited on p-GaN, Applied Surface Science, 259, 399 (2012); https://doi.org/10.1016/j.apsusc.2012.07.058.

S.-I. Park, Y. -J. Quan, S. -H. Kim, H. Kim, S. Kim, D. -M. Chun, S. -H. Ahn, A review on fabrication processes for electrochromic devices, International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 397 (2016); https://doi.org/10.1007/s40684-016-0049-8.

C.Karunakaran, A. Vijayabalan, G. Manikandan, Photocatalytic and bactericidal activities of hydrothermally synthesized nanocrystalline Cd-doped ZnO, Superlattices and Microstructures, 5, 443 (2012); https://doi.org/10.1016/j.spmi.2012.01.008.

Y.Caglar Morphological, optical and electrical properties of CdZnO films prepared by sol–gel methodJournal of Physics D: Applied Physics, 42, 065421 (2009); http://dx.doi.org/10.1088/0022-3727/42/6/065421.

J.K. Rajput, T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, CdO:ZnO nanocomposite thin films for oxygen gas sensing at low temperature, Materials Science and Engineering: B., 228, 241 (2018); https://doi.org/10.1016/j.mseb.2017.12.002.

F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, Microstructure and electro-optical properties of sol–gel derived Cd-doped ZnO films, Superlattices and Microstructures, 47, 732 (2010); https://doi.org/10.1016/j.spmi.2010.02.006.

T. K. Pathak, J. K. Rajput, V. Kumar, L. P. Purohit, H. C. Swart, R. E. Kroon, Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method, Journal of Colloid and Interface Science, 487, 378 (2017); https://doi.org/10.1016/j.jcis.2016.10.062.

N. Kumar, A. Srivastava, Faster photoresponse, enhanced photosensitivity and photoluminescence in nanocrystalline ZnO films suitably doped by Cd, Journal of Alloys and Compounds, 706, 438(2017); http://dx.doi.org/10.1016/j.jallcom.2017.02.244.

I.Shtepliuk, V. Khranovskyy, G. Lashkarev, V. Khomyak, A. Ievtushenko, V. Tkach, V. Lazorenko, I. Timofeeva, R. Yakimova, Microstructure and luminescence dynamics of ZnCdO films with high Cd content deposited on different substrates by DC magnetron sputtering, Applied Surface Science, 276, 550 (2013); https://doi.org/10.1016/j.apsusc.2013.03.132.

Y. R. Sui, Y. J. Wu, Y. P. Song, S. Q. Liv, B. Yao, X. W. Meng, L. Xiao, A study on structural formation and optical properties of Zn1-xCdxO thin films synthesized by the DC and RF reactive magnetron co-sputtering, Journal of Alloys and Compounds, 678, 383 (2016); https://doi.org/10.1016/j.jallcom.2016.03.302.

A.Ievtushenko, V. Tkach, V. Strelchuk, L. Petrosian, O. Kolomys, O. Kutsay, V. Garashchenko, O. Olifan, S. Korichev, G. Lashkarev, V. Khranovskyy, Solar Explosive Evaporation Growth of ZnO Nanostructures, Applied Science, 7(4), 383 (2017); https://doi.org/10.3390/app7040383.

S. Vijayalakshmi, S. Venkataraj, R. Jayavel, Characterization of cadmium doped zinc oxide (Cd:ZnO) thin films prepared by spray pyrolysis method, Journal of Physics D: Applied Physics, 41, 7 (2008); http://dx.doi.org/10.1088/0022-3727/41/24/245403.

D. Acharya, S. Moghe, R. Panda, S. B. Shrivastava, M. Gangrade, T. Shripathi, D. M. Phase, V. Ganesan, Effect of Cd dopant on electrical and optical properties of ZnO thin films prepared by spray pyrolysis route, Thin Solid Films, 525, 49 (2012); https://doi.org/10.1016/j.tsf.2012.10.100.

N. L. Tarwal, A. R. Patil, N. S. Harale, A. V. Rajgure, S. S. Suryavanshi, W. R. Bae, P. S. Patil, J. H. Kim, J. H. Jang, Gas sensing performance of the spray deposited Cd-ZnO thin films, Journal of Alloys and Compounds, 598, 282 (2014); https://doi.org/10.1016/j.jallcom.2014.01.200.

S. P. Bharath, K. V. Bangera, G. K. Shivakumar, Properties of CdxZn1-xO thin films and their enhanced gas sensing performance, Journal of Alloys and Compounds, 720, 39 (2017); http://dx.doi.org/10.1016/j.jallcom.2017.05.240.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li, Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires, Appl. Phys. Lett, 84, 3085 (2004); https://doi.org/10.1063/1.1707225.

S.Sakurai, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita, S. Fujita, Blue Photoluminescence from ZnCdO Films Grown by Molecular Beam Epitaxy, Japanese Journal of Applied Physics, 39, 1146 (2000); http://dx.doi.org/10.1143/JJAP.39.L1146.

S. Shigemori, A. Nakamura, J. Ishihara, T. Aoki, J. Temmyo, Zn1-xCdxO film growth using remote plasma-enhanced metalorganic chemical vapor deposition, Japanese Journal of Applied Physics, 43(8), 1088 (2004); http://dx.doi.org/10.1143/JJAP.43.L1088.

M. Souissi, A. Fouzri, G. Schmerber, Highlighting of ferromagnetism above room temperature in Cd-doped ZnO thin films grown by MOCVD, Solid State Communications, 218, 40 (2015); https://doi.org/10.1016/j.ssc.2015.06.013.

S. Mondal, P. Mitra, Preparation of cadmium-doped ZnO thin films by SILAR and their characterization, Bulletin of Materials Science, 35, 751 (2012); https://doi.org/10.1007/s12034-012-0350-2.

Jacob, L. Balakrishnan, S. R. Meher, K. Shambavi, Z. C. Alex, Structural, optical and photodetection characteristics of Cd alloyed ZnO thin film by spin coating, Journal of Alloys and Compounds, 695, 3753 (2017); https://doi.org/10.1016/j.jallcom.2016.11.265.

U. D. Babar, N. M. Garad, A. A. Mohite, B. M. Babar, H. D. Shelke, P. D. Kamble, U. T. Pawar, Study the photovoltaic performance of pure and Cd-doped ZnO nanoparticles prepared by reflux method, Materials Today: Proceedings, 43, 2780 (2021); https://doi.org/10.1016/j.matpr.2020.08.008.

G. K. Weldegebrieal, Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review, Inorganic Chemistry Communications. 120, 108140 (2020); https://doi.org/10.1016/j.inoche.2020.108140.

Z. Liu, P. X. Yan, G. H. Yue, J. B. Chang, R. F. Zhuo, D. M. Qu, Controllable synthesis of undoped/Cd-doped ZnO nanostructures, Materials Letters, 60, 3122 (2006); https://doi.org/10.1016/j.matlet.2006.02.056.

C.Bhukkal, R. Vats, B. Goswami, N. Rani, R. Ahlawat, Zinc content (x) induced impact on crystallographic, optoelectronic, and photocatalytic parameters of Cd1-xZnxO (0≤x≤1) ternary nanopowder, Materials Science and Engineering: B., 265, 11500 (2021); https://doi.org/10.1016/j.mseb.2020.115001.

C.Belver, J. Bedia, A. Gómez-Avilés, M. Peñas-Garzón, J. J. Rodriguez, Semiconductor photocatalysis for water purification in micro and nano technologies, Nanoscale Materials in Water Purification, 581 (2019); https://doi.org/10.1016/B978-0-12-813926-4.00028-8.

F. Sanakousar, C. C Vidyasagar, V. M. Jiménez-Pérez, B. K. Jayanna, Mounesh, A. H. Shridhar, K. Prakash, Efficient photocatalytic degradation of crystal violet dye and electrochemical performance of modified MWCNTs/Cd-ZnO nanoparticles with quantum chemical calculations, Journal of Hazardous Materials Advances, 2, 100004 (2021); https://doi.org/10.1016/j.hazadv.2021.100004.

H. A. Azqhandi, B. F. Vasheghani, F. H. Rajabi, M. Keramati, Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study, Results in Physics, 7, 1106 (2017); https://doi.org/10.1016/j.rinp.2017.02.033.

Downloads

Published

2023-04-07

How to Cite

Didus, R. I., Myroniuk, D. V. ., Myroniuk, L. A., & Ievtushenko, A. I. (2023). Features of technological synthesis and properties of ZnO-Cd based materials for photocatalytic applications. Review. Physics and Chemistry of Solid State, 24(2), 219–234. https://doi.org/10.15330/pcss.24.2.219-234

Issue

Section

Review