The ternary system Hf–Re–Al at 1000 °C

Authors

  • Liana Zinko Ivan Franko National University of Lviv, Lviv, Ukraine
  • Galyna Nychyporuk Ivan Franko National University of Lviv, Lviv, Ukraine
  • Oksana Matselko Ivan Franko National University of Lviv, Lviv, Ukraine
  • Roman Gladyshevskii Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.2.361-366

Keywords:

hafnium, rhenium, aluminum, X-ray powder diffraction, energy-dispersive X-ray spectroscopy, phase diagram, isothermal section, crystal structure

Abstract

The interaction of the components in the Hf–Re–Al system was investigated by X-ray powder diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The isothermal section of the phase diagram at 1000 °C was constructed in the full concentration range. A new ternary compound ~Hf5Re2Al2, isostructural with Ti5Ga4 (hP18, P63/mcm), and two extended solid solutions Hf(Re,Al)2 were found.

References

Y. B. Kuz’ma, T. P. Paitash, S. I. Baidala, Phase equilibria in the systems titanium–vanadium–boron and titanium–manganese–boron, Visn. Lviv Univ., Ser. Chem., 11, 18 (1969).

Y. V. Voroshylov, Y. B. Kuz’ma, Phase equilibria in the ternary systems zirconium–vanadium–boron, zirconium–niobium–boron, zirconium–manganese–boron, Powder Metall. Met. Ceram., 6(6), 466 (1967).

Y. B. Kuz’ma, The systems Ti–Co–B and Ti–Re–B, Neorg. Mater., 7, 514 (1971).

Y. B. Kuz’ma, B. I. Lakh, B. I. Stadnyk, D. A. Kovalyk, The systems hafnium–tungsten–boron, hafnium–rhenium–boron and niobium–rhenium–boron, Powder Metall. Met. Ceram., 9(12), 1003 (1970).

V. Raghavan, Al–Mn–Ti (Aluminum-Manganese-Titanium), J. Phase Equilib. Diffus., 32(5), 465 (2011); https://doi.org/10.1007/s11669-011-9926-6

X. Huang, J. Tan, Y. Guo, G. Xu, Y. Cui, Experimental Diffusion Research on BCC Ti–Mn Binary and Ti–Al–Mn Ternary Alloys, J. Phase Equilib. Diffus., 39, 702 (2018); https://doi.org/10.1007/s11669-018-0675-7

X. M. Huang, G. M. Cai, J. Zhang, F. Zheng, H. S. Liu, Z. P. Jin, Phase relation and transition in the Ti–Al–Mn system, J. Alloys Compd., 861, 158578 (2021); https://doi.org/10.1016/j.jallcom.2020.158578

X. L. Yan, X. Q. Chen, A. V. Grytsiv, P. Rogl, R. Podloucky, H. G. Schmidt, G. Giester, X. Y. Ding, On the ternary Laves phases Ti(Mn1-xAlx)2 with MgZn2-type, Intermetallics, 16, 16 (2008). https://doi.org/10.1016/j.intermet.2007.07.005

V. Y. Markiv, A. I. Skripka, Examination of the phase equilibria in Ti–Mn–Ga and Zr–Mn–Ga alloys, Russ. Metall. (Engl. Transl.), 4, 196 (1981).

N. Belyavina, A. I. Skripka, V. Y. Markiv, The systems Zr–{Sc, Ti, Mn, Nb}–Ga and Hf–{Sc, Mn, Zr, Nb}–Ga, Phase Equilibria in Metal Alloys, Nauka, M., 154 (1981).

N. N. Belyavina, V. Y. Markiv, Isothermal section of the phase diagram of Hf–Mn–Ga system at 500 °С, Visn. Kyiv. Univ., Ser. Phys., 21, 17 (1980).

L. D. Gulay, V. I. Zaremba, Investigation of the interaction between the components in the Zr–Mn–In system at 870 K, J. Alloys Compd., 347, 184 (2002); https://doi.org/10.1016/S0925-8388(02)00776-4

L. Gulay, V. Zaremba, Y. Kalychak, Crystal structure of ZrMn0.7In2.3 compound, Visn. Lviv Univ., Ser. Chem., 39, 101 (2000).

A. E. Dwight, Alloying behavior of zirconium, hafnium and the actinides in several series of isostructural compounds, J. Less-Common Met., 34, 279 (1974); https://doi.org/10.1016/0022-5088(74)90170-2

H. Mabuchi, K. I. Hirukawa, Y. Nakayama, Formation of structural L12 compounds in TiAl3-base alloys containing Mn, Scr. Metall., 23, 1761 (1989); https://doi.org/10.1016/0036-9748(89)90357-8

V. Y. Markiv, V. V. Burnasheva, New ternary compounds in the systems (Sc, Ti, Zr, Hf)–(V, Cr, Mn, Fe, Co, Ni, Cu)–(Al, Ga), Dopov. Akad. Nauk Ukr. RSR, Ser. A: Fiz.-Mat. Tekh. Nauki, 463 (1969).

P. Villars, K. Cenzual (Eds.), Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds, Release 2021/22, ASM International, Materials Park, OH (2021).

P. Villars, H. Okamoto, K. Cenzual (Eds.), ASM Alloy Phase Diagram Database, Release 2006/2018, ASM International, Materials Park, OH (2018).

W. Kraus, G. Nolze, Powder Cell for Windows, Berlin (1999).

STOE WinXPOW, Version 1.2, STOE & CIE GmbH, Darmstadt (2001).

L. Akselrud, Y. Grin, WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Crystallogr., 47, 803 (2014).

L. A. Cornish, M. J. Witcom, An investigation of the Al–Re phase diagram, J. Alloys Compd., 291, 117 (1999); https://doi.org/10.1016/S0925-8388(99)00248-0

J. L. Murray, A. J. McAlister, D. J. Kahan, The Al–Hf (Aluminum–Hafnium) system, J. Phase Equilib., 19(4), 376 (1998).

H. Boller, H. Nowotny, A. Wittmann, The crystal structure of some hafnium-containing phases, Monatsh. Chem., 91, 1174 (1960).

A. Taylor, B. J. Kagle, N. J. Doyle, The constitution diagram of the rhenium–hafnium system, J. Less-Common Met., 5(1), 26 (1963); https://doi.org/10.1016/0022-5088(63)90041-9

J. Emsley, The Elements (2nd Ed.), Clarendon Press, Oxford (1991).

K. Schubert, H. G. Meissner, M. Pötzschke, W. Rossteutscher, E. Stolz, Some structural data of metallic phases (7), Naturwissenschaften, 49, 57 (1962).

W. Rieger, H. Nowotny, F. Benesovsky, Phases with octahedral elements of transition metals, Monatsh. Chem., 96, 232 (1965); https://doi.org/10.1007/BF00912313

Downloads

Published

2023-06-27

How to Cite

Zinko, L., Nychyporuk, G., Matselko, O., & Gladyshevskii, R. (2023). The ternary system Hf–Re–Al at 1000 °C. Physics and Chemistry of Solid State, 24(2), 361–366. https://doi.org/10.15330/pcss.24.2.361-366

Issue

Section

Scientific articles (Chemistry)