Synthesis, crystal and energy structure of the Ag8SnS6 crystal


  • I.V. Semkiv Lviv Polytechnic National University, Lviv, Ukraine
  • H.A. Ilchuk Lviv Polytechnic National University, Lviv, Ukraine
  • N.Y. Kashuba Lviv Polytechnic National University, Lviv, Ukraine
  • V.M. Kordan Ivan Franko National University of Lviv, Lviv, Ukraine
  • A.I. Kashuba Lviv Polytechnic National University, Lviv, Ukraine



argyrodite, synthesis, X-ray diffraction, morphology, density functional theory, band structure, effective mass, the density of states


The Ag8SnS6 crystal was synthesized by directly melting a high-purity stoichiometric mixture of elementary Ag, Sn, and S in a sealed quartz ampoule. This argyrodite crystallizes in the orthorhombic structure (Pna21 space group (No. 33)) at room temperature. The theoretical first-principle calculations of the electronic band structure and density of states of a αʹʹ-Ag8SnS6 crystal are estimated by the generalized gradient approximation (GGA) and local density approximation (LDA). A Perdew–Burke–Ernzerhof functional (PBE) and (PBEsol) were utilized for GGA calculation. All calculated parameters correlate well with known experimental data. Based on the electronic band structure, the effective mass of electrons and holes was calculated. The anisotropic behavior of electronic band structure is discussed.


W.F. Kuhs, R. Nitsche, K. Scheunemann, The argyrodites — A new family of tetrahedrally close-packed structures, Mater. Res. Bull., 14(2), 241 (1979);

B. Zhou, Y. Xing, S. Miao, M. Li, W.-H. Zhang, C. Li, Synthesis and Characterization of Ag8(Ge1−x,Snx)(S6−y,Sey) Colloidal Nanocrystals, Chem. Eur. J., 20, 12426 (2014);

Q. He, T. Qian, J. Zai, Q. Qioa, S. Huang, Y. Li, M. Wang, Efficient Ag8GeS6 counter electrode prepared from nanocrystal ink for dye-sensitized solar cells, J. Mater. Chem. A., 3, 20359 (2015).

Q. He, S. Huang, C. Wang, Q. Qiao, N. Liang, M. Xu, W. Chen, J. Zai, X. Qian, The Role of Mott–Schottky Heterojunctions in Ag–Ag8SnS6 as Counter Electrodes in Dye-Sensitized Solar Cells, ChemSusChem., 8(5), 817 (2015);

S. Lin, W. Li, Y. Pei, Thermally insulative thermoelectric argyrodites, Materials Today., 48(2), 198 (2021);

L. Gao, M.-H. Lee, J. Zhang, Metal-cation substitutions induced the enhancement of second harmonic generation in A8BS6 (A = Cu, and Ag; B = Si, Ge, and Sn), New J. Chem., 43, 37193 (2019); .

C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics, Nano Energy., 83, 105858 (2021); .

K.-W. Cheng, W.-T. Tsai, Y.-H. Wu, Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells, Journal of Power Sources., 317, 81 (2016); .

I.Y. Nekrasov, M.P. Kulakov, Z.D. Sokolovskaya, A.V. Chichagov, Phase relations in the tin-silver systems Ag2S-SnS and Ag2S-SnS2, Geochem. Int., 13, 23 (1976).

O. Gorochov, Les composes Ag8MX6 (M=Si, Ge, Sn et X=S, Se, Te), Bull. Soc. Chim. France, 6, 2263 (1968).

O.V. Parasyuk, I.D. Olekseyuk, L.V. Piskach, S.V. Volkov, V.I. Pekhnyo, Phase relations in the Ag2S–CdS–SnS2 system and the crystal structure of the compounds, J. Alloys Compd., 399(1-2), 173 (2005); .

C.-L. Lu, L. Zhang, Y.-W. Zhang, S.-Y. Liu, Y. Mei, Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method, Chin. Phys. B., 24(1), 017501 (2015); .

X. Shen, Y. Xia, C.-C. Yang, Z. Zhang, S. Li, Y.-H. Tung, A. Benton, X. Zhang, X. Lu, G. Wang, J. He, X. Zhou, High Thermoelectric Performance in Sulfide-Type Argyrodites Compound Ag8Sn(S1−xSex)6 Enabled by Ultralow Lattice Thermal Conductivity and Extended Cubic Phase Regime, Advanced Functional Materials., 30(21), 2000526 (2020); .

T.J. Slade, V. Gvozdetskyi, J.M. Wilde, A. Kreyssig, E. Gati, L.-L. Wang, Y. Mudryk, R.A. Ribeiro, V.K. Pecharsky, J.V. Zaikina, S.L. Bud’ko, P.C. Canfield, A Low-Temperature Structural Transition in Canfieldite, Ag8SnS6, Single Crystals, Inorg. Chem., 60(24), 19345 (2021); .

C. Sturm, N. Boccalon, D. Ramirez, H. Kleinke, Stability and Thermoelectric Properties of the Canfieldite Ag8SnS6, ACS Appl. Energy Mater. 4(9), 10244 (2021); .

Wang N. New data for Ag8SnS6 (canfeildite) and Ag8GeS6 (argyrodite), Neues Jahrb. Mineral. Monatsh., 269 (1978).

O. Gorochov, Les composes Ag8MX6 (M=Si, Ge, Sn et X=S, Se, Te), Bull. Soc. Chim. France., 6, 2263 (1968).

G.H. Moh, Experimental and descriptive ore mineralogy. the Ag–Sn–S system. the Ag–Ge–S system, N. Jb. Miner. Abh., 128(2), 146 (1976).

Z.M. Aliyeva, S.M. Bagheri, Z.S. Aliev, I.J. Alverdiyev, Y.A. Yusibov, M.B. Babanly, The phase equilibria in the Ag2S–Ag8GeS6–Ag8SnS6 system, J. Alloys Compd., 611, 395 (2014); .

A. Sugaki, A. Kitakaze, H. Kitazawa, Science Reports of the Tohoku University, Series III, 16(2), 199 (1985).

J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 78(7), 1396 (1997); .

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, B.K. Zhou, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett., 100(13), 136406 (2008); .

H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B., 13(12), 5188 (1976); .

C.W.F.T. Pistorius, O. Gorochov, Polymorphism and stability of the semiconducting series Ag8МХ6 (М = Si, Ge, Sn, і X = S, Se, Te) to high pressures, High Temperatures- High Pressures., 2(1), 31 (1970).

A. Kindurys, A. Shileika, Investigations of the absorption edge of the compounds at phase trancitions, Inst. Phys. Conf. Ser., 35, 67 (1977).

L. Wang, W. Wang, A New Strategy to Design Highly Sustainable Sulfide PhotoCatalyst for Hydrogen Production, Chinese Journal of Chemistry, 35(2), 148 (2017); .

H.A. Ilchuk, L.I. Nykyruy, A.I. Kashuba, I.V. Semkiv, M.V. Solovyov, B.P. Naidych, V.M. Kordan, L.R. Deva, M.S. Karkulovska, R.Y. Petrus, Electron, phonon, optical and thermodynamic properties of CdTe crystal calculated by DFT, Physics and Chemistry of Solid State., 23(2), 261 (2022); .

A. Kashuba, Influence of metal atom substitution on the electronic and optical properties of solid-state Cd0.75X0.25Te (X= Cu, Ag and Au) solutions, Physics and Chemistry of Solid State., 24(1), 92 (2023); .

W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A., 140(4), 1133 (1965); .

I.V. Semkiv, B.A. Lukiyanets, H.A. Ilchuk, R.Yu. Petrus, A.I. Kashuba, M.V. Chekaylo, Energy Structure of β´-phase of Ag8SnSe6 Crystal, J. Nano- Electron. Phys., 8(1), 01011 (2016); .

M.Ya. Rudysh, M.G. Brik, V.Yo. Stadnyk, R.S. Brezvin, P.A. Shchepanskyi, A. Fedorchuk, O.Y. Khyzhun, I.V. Kityk, M. Piasecki, Ab initio calculations of the electronic structure and specific optical features of β-LiNH4SO4 single crystals, Physica B Condens, 528, 37 (2018); .

M.Ya. Rudysh, P.A. Shchepanskyi, A.O. Fedorchuk, M.G. Brik, C.-G. Ma, G.L. Myronchuk, M. Piasecki, First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor, J. Alloys Compd., 826, 154232 (2020); .

A. Fonari, C. Sutton, Effective Mass Calculator (2012).




How to Cite

Semkiv, I., Ilchuk , H., Kashuba, N., Kordan, V., & Kashuba, A. (2023). Synthesis, crystal and energy structure of the Ag8SnS6 crystal. Physics and Chemistry of Solid State, 24(3), 441–447.



Scientific articles (Physics)

Most read articles by the same author(s)