Modeling the deformation of the semiconductor quantum dot with a multilayer shell in a living cell

Authors

  • O.V. Kuzyk Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • O.O. Dan'kiv Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • R.M. Peleshchak Lviv Polytechnic National University, Lviv, Ukraine
  • I.D. Stolyarchuk Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • V.A. Kuhivchak Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.675-681

Keywords:

core-shell quantum dot, human serum albumin, deformation, comprehensive compression modulus, living cell

Abstract

The model of the semiconductor quantum dot with a multilayer shell and the quantum dot-human serum albumin bionanocomplex, which are contained in a living cell, was constructed. The regularities of changes in deformation of materials of the CdSe-core / ZnS/CdS/ZnS-shell quantum dot with changes in cell elasticity (comprehensive modulus) at different core radii, thicknesses of individual shell layers, and surface concentration of albumin molecules were investigated. It is shown that the presence of human serum albumin on the surface of the quantum dot significantly increases its sensitivity to pressure caused by the surrounding medium (living cell). The obtained results indicate the prospect of using the core-shell quantum dot-human serum albumin bionanocomplexes for the diagnosis of cancer diseases in the early stages. This is due to the fact that such diseases are accompanied by a sharp change in the elasticity of the cell (its elastic constants).

References

A.S. Kashani, M. Packirisamy, Cancer cells optimize elasticity for efficient migration, R. Soc. Open Sci. 7, 200747 (2020); http://dx.doi.org/10.1098/rsos.200747.

M. Plodinec, M. Loparic, C. A Monnier et al., The nanomechanical signature of breast cancer, Nat Nanotechnol 7 (11), 757 (2012); https://doi.org/10.1038/nnano.2012.167.

E.A. Corbin, F. Kong, C.T. Lim, W.P. King, R. Bashir, Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy, Lab. Chip 15 (3), 839 (2015); https://doi.org/10.1039/C4LC01179A.

R. Omidvar, M. Tafazzoli-Shadpour, M.A. Shokrgozar, M. Rostami, Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: An approach for evaluating cellular invasion, J. Biomech. 47 (13), 3373 (2014); https://doi.org/10.1016/j.jbiomech.2014.08.002.

M. Prabhune, G. Belge, A. Dotzauer, J. Bullerdiek, M. Radmacher, Comparison of mechanical properties of normal and malignant thyroid cells, Micron 43 (12), 1267 (2012); https://doi.org/10.1016/j.micron.2012.03.023.

V. Palmieri, D. Lucchetti, A. Maiorana, M. Papi, G. Maulucci, G. Ciasca, M. Svelto, M. De Spirito, A. Sgambato, Biomechanical investigation of colorectal cancer cells, Appl. Phys. Lett. 105, 123701 (2014); https://doi.org/10.1063/1.4896161.

L. Bastatas, D. Martinez-Marin, J. Matthews, J. Hashem, Y.J. Lee, S. Sennoune, S. Filleur, R. Martinez-Zaguilan, S. Park, AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential, Biochim. Biophys. Acta Gen. Subj. 1820 (7), 1111 (2012); https://doi.org/10.1016/j.bbagen.2012.02.006.

G.Weder, M.C. Hendriks-Balk, R. Smajda, D. Rimoldi et al. Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties, Nanomed. Nanotechnol. Biol. Med. 10 (1), 141 (2014), https://doi.org/10.1016/j.nano.2013.07.007.

M. Pachenari, S.M. Seyedpour, M. Janmaleki, S.B. Shayan, S. Taranejoo, H. Hosseinkhani, Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: Investigating different grades of colon cancer cell lines, J. Biomech. 47 (2), 373 (2014); https://doi.org/10.1016/j.jbiomech.2013.11.020.

S. Kwon, W. Yang, D. Moon, K.S. Kim, Comparison of Cancer Cell Elasticity by Cell Type, Journal of Cancer 11 (18), 5403–5412 (2020); https://doi.org/10.7150/jca.45897;

F. Pérez-Cota, R. Fuentes-Domínguez, S. La Cavera et al., Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells, Journal of Applied Physics 128, 160902: 1 (2020); https://doi.org/10.1063/5.0023744.

G.S. Selopal, H. Zhao, Zh.M. Wang, Core/Shell Quantum Dots Solar Cells, Advanced Funct. Mater. 13, 1908762 (2020); https://doi.org/10.1002/adfm.201908762.

S. Chinnathambi, N. Abu, N. Hanagata, Biocompatible CdSe/ZnS quantum dot micelles for long-term cell imaging without alteration to the native structure of the blood plasma protein human serum albumin, RSC Adv 7, 2392 (2017); https://doi.org/10.1039/C6RA26592H.

I. Du Fossé, S. Lal, A.N. Hossaini, I. Infante, A.J. Houtepen, Effect of Ligands and Solvents on the Stability of Electron Charged CdSe Colloidal Quantum Dots, J. Phys. Chem. C 125, 23968 (2021); https://doi.org/10.1021/acs.jpcc.1c07464.

R. Wojnarowska-Nowak, J. Polit, A. Zięba, I.D. Stolyarchuk, S. Nowak, M. Romerowicz-Misielak, E.M. Sheregii, Effect of Ligands and Solvents on the Stability of Electron Charged CdSe Colloidal Quantum Dots, Opto-Electronics Review 25, 137 (2017); https://doi.org/10.1016/j.opelre.2017.04.004.

R. Wojnarowska-Nowak, J. Polit, A. Zięba, I.D. Stolyarchuk, S. Nowak, M. Romerowicz-Misielak, E.M. Sheregii, Synthesis and characterisation of human serum albumin passivated CdTe nanocrystallites as fluorescent probe, Micro and Nano Letters 13, 326 (2018); http://dx.doi.org/10.1049/mnl.2017.0054.

Q. Xiao, Sh. Huang, W. Sua, P. Li, J. Ma, F. Luo, J. Chen, Y. Liu, Systematically investigations of conformation and thermodynamics of HSA adsorbed to different sizes of CdTe quantum dots, Colloids and Surfaces B: Biointerfaces 102, 76 (2013); https://doi.org/10.1016/j.colsurfb.2012.08.028.

O. Kuzyk, O. Dan’kiv, R. Peleshchak, I. Stolyarchuk, The deformation of spherical CdSe quantum dot with a multilayer shell, Rom. J. Phys. 67, 607 (2022); https://rjp.nipne.ro/2022_67_5-6/RomJPhys.67.607.pdf.

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, The influence of acoustic deformation on the recombination radiation in InAs/GaAs heterostructure with InAs quantum dots, Physica E: Low-dimensional Systems and Nanostructures 119, 113988 (2020); https://doi.org/10.1016/j.physe.2020.113988.

D. Vollath, F.D. Fischer, D. Holec, Surface energy of nanoparticles – influence of particle size and structure, Beilstein J. Nanotechnol. 9, 2265 (2018); https://doi.org/10.3762/bjnano.9.211.

F.A. La Porta, J. Andrés, M.S. Li, J.R. Sambrano, J.A. Varela, E. Longo, Zinc blende versus wurtzite ZnS nanoparticles: control of the phase and optical properties by tetrabutylammonium hydroxide, Phys. Chem. Chem. Phys. 16 (37), 20127 (2014); https://doi.org/10.1039/C4CP02611J.

O.V. Kuzyk, І.D. Stolyarchuk, O.O. Dan’kiv, R.M. Peleshchak, Baric properties of quantum dots of the type of core (CdSe)-multilayer shell (ZnS/CdS/ZnS) for biomedical applications, Appl. Nanosci. 13, 4727 (2023); https://doi.org/10.1007/s13204-022-02604-5.

Downloads

Published

2023-12-13

How to Cite

Kuzyk, O., Dan’kiv, O., Peleshchak, R., Stolyarchuk, I., & Kuhivchak, V. (2023). Modeling the deformation of the semiconductor quantum dot with a multilayer shell in a living cell. Physics and Chemistry of Solid State, 24(4), 675–681. https://doi.org/10.15330/pcss.24.4.675-681

Issue

Section

Scientific articles (Physics)