Formation of Nanoclusters on the Adsorbed Surface under the Action of Comprehensive Pressure and Electric Field

  • R.M. Peleshchak Ivan Franko Drohobych State Pedagogical University
  • O.V. Kuzyk Ivan Franko Drohobych State Pedagogical University
  • O.O. Dan’kiv Ivan Franko Drohobych State Pedagogical University
Keywords: nucleation, comprehensive pressure, electric field, adatom, surface superlattice, deformation

Abstract

In the paper, the influence of the electric field and the comprehensive pressure on the conditions of formation and the period of the surface superlattice of adatoms in semiconductors is investigated. It is established that in GaAs semiconductor, an increase in the comprehensive pressure and the electric field strength, depending on the direction, leads to an increase or decrease of the critical temperature (the critical concentration of adatoms), at which the formation of self-organized nanostructure is possible. It is shown that in strongly alloyed n-GaAs semiconductor, the increase of the electric field strength leads to a monotonous change (decrease or increase depending on the direction of the electric field) of the period of self-organized surface nanostructures of adatoms. The period of nanometer structure of the adatoms depending on the value of comprehensive pressure, temperature, average concentration of the adatoms and conduction electrons is defined. It is established that the increase in pressure leads to expansion of temperature intervals within which nanometer structures of the adatoms are formed, and the decrease of their period. 

References

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Phys. A 110(3), 553 (2013) (doi: https://doi.org/10.1007/s00339-012-7184-z).

J. Wu., Y. Yang, H. Gao, Y. Qi, AIP Advances 7(3), 035218 (2017) (doi: https://doi.org/10.1063/1.4979507).

J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE Journal of selected topics in quantum electronics 23 (3), 9000615 (2017) (doi: https://doi.org/10.1109/JSTQE.2016.2614183).

V.I. Emel’yanov, Laser Phys. 18(12), 1435 (2008) (doi: https://doi.org/10.1134/S1054660X08120104).

A.I. Vlasenko, A. Baidullaeva, V.P. Veleschuk, P.E. Mozol, N.I. Boiko, O.S. Litvin, Semiconductors 49(2), 229 (2015) (https://doi.org/10.1134/S1063782615020220).

Y. Zeng, B. Tao, J. Phys. D: Appl. Phys. 49, 195308 (2016) (doi: doi.org/10.1088/0022-3727/49/19/195308).

C. Tang, X. Liao, W. Zhong, H. Yu, Zh. Liu, RSC Advances 11, 6439 (2017) (doi: 10.1039/C6RA27426A).

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, Journal of Nano- and Electronic Physics 10(1), 01014 (2018) (doi: https://doi.org/10.21272/jnep.10(1).01014).

C. Taylor, E. Marega, E.A. Stach, G. Salamo, L. Hussey, M. Munoz, A. Malshe, Nanotechnology 19, 015301 (2008).(doi: https://doi.org/10.1088/0957-4484/19/01/015301).

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, Ukr. J. Phys. 61(8), 741 (2016) (doi: https://doi.org/10.15407/ujpe61.08.0747).

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, J. Nano- Electron. Phys. 8(2), 02014 (2016) (doi: http://dx.doi.org/10.21272/jnep.8(2).02014).

R.M. Peleshchak, S.K. Guba, O.V. Kuzyk, I.V. Kurilo, O.O. Dan’kiv, Semiconductors 47(3), 349 (2013) (doi: https://doi.org/10.1134/S1063782613030196).

R. D. Vengrenovich, Yu. V. Gudyma, and S. V. Yarema, Semiconductors 35(12), 1378 (2001) (doi: https://doi.org/10.1134/1.1427975)).

N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin, P.S. Kop’ev, Zh.I. Alferov, D. Bimberg, Semiconnductors 32(4), 343 (1998) (doi: https://doi.org/10.1134/1.1187396).

R.M. Peleshchak, I.I. Lazurchak, O.V. Kuzyk, O.O. Dan’kiv, G.G. Zegrya, Semiconductors 50(3), 314 (2016) i:(https://doi.org/10.1134/S1063782616030180).

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, Cond. Mat. Phys. 18(4), 43801 (2015) (10.5488/CMP.18.43801).

Ya. M. Olikh, M. D. Tymochko, O. Ya. Olikh, V. A. Shenderovsky, Journal of Electronic Materials 47, 4370 (2018) (https://www.springerprofessional.de/journal-of-electronic-materials-8-2018/15902282).

C. Kristukat, A.R. Goсi, Phys. stat. sol. (b) 244, 53 (2007) (doi: https://doi.org/10.1002/pssb.200672511).

O.V. Balaban, I.I. Grygorchak, R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, Progress in Natural Science: Mater. International 24(4), 397 (2014) (doi: https://doi.org/10.1016/j.pnsc.2014.07.003).

S. Ostapenko, Appl. Phys. A 69(2), 225 (1999) (doi: 10.1007/s003390050994)..

O.Ya. Olikh, K.V. Voytenko, R.M. Burbelo, Journal of Applied Physics 117(4), 044505 (2015) (doi: https://doi.org/10.1063/1.4906844).

И. В. Островский, А. Б. Надточий, А. А. Подолян, Физ. техн. полупр. 36, 389 (2002).

L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, London, 1970).

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, Cond. Mat. Phys. 17(2), 23601 (2014) (doi: https://doi.org/10.5488/CMP.17.23601).

C.G. van de Walle, Phys. Rev. B. 39(3), 1871 (1989) (doi: https://doi.org/10.1103/PhysRevB.39.1871).

J.F. Wager, J. Appl. Phys. 69(5), 3022 (1991) ( doi: doi.org/10.1063/1.348589).

T.T. Mnatsakanov, M.E. Levinshtein, Semiconductors, 38(1), 56 (2004) (doi: doi.org/10.1134/1.1641133).

K.F. MacDonald, V.A. Fedotov, Applied Phys. Let. 80, 1643 (2002) (doi: https://doi.org/10.1063/1.1456260).

R.M. Peleshchak, O.V. Kuzyk, O.O. Dan’kiv, Ukr. J. Phys. 55(4), 434 (2010).

Published
2019-10-18
How to Cite
[1]
PeleshchakR., KuzykO. and Dan’kivO. 2019. Formation of Nanoclusters on the Adsorbed Surface under the Action of Comprehensive Pressure and Electric Field. Physics and Chemistry of Solid State. 20, 3 (Oct. 2019), 239-246. DOI:https://doi.org/10.15330/pcss.20.3.239-246.
Section
Scientific articles