Synthesis and electrochemical hydrogenation of RxTb2-xNi17 and Tb2Ni17-yMy phases (R = Y, Zr, La; M = Li, Mg)

Authors

  • V. Kordan Ivan Franko National University of Lviv, Lviv, Ukraine
  • V. Nytka Ivan Franko National University of Lviv, Lviv, Ukraine
  • I. Tarasiuk Ivan Franko National University of Lviv, Lviv, Ukraine
  • K. Kluziak Jan Długosz University of Czestochowa, Czestochowa, Poland
  • V. Pavlyuk Ivan Franko National University of Lviv, Lviv, Ukraine; Jan Długosz University of Czestochowa, Czestochowa, Poland

DOI:

https://doi.org/10.15330/pcss.25.2.325-332

Keywords:

powder X-ray diffraction, scanning electron microscopy, Th2Ni17-type structure, electrochemical properties, Ni-MH battery

Abstract

Alloys from the regions of existence of the solid solutions RxTb2-xNi17 and Tb2Ni17-yMy were synthesized by arc-melting with further annealing at 400 ºС. Quantitative and qualitative composition of alloys and powders of electrode materials was determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The Tb/R/Ni and Tb/Ni/Mg ratio in the samples was confirmed also by X-ray fluorescence spectroscopy. The cell parameters of RxTb2-xNi17 (x = 0.5) ternary phases are: a = 8.2987(9) Å, c = 8.0206(8) Å, V = 478.37(9) Å3 for R = Zr, a = 8.3161(6) Å, c = 8.0482(8) Å, V = 482.03(6) Å3 for R = Y and a = 8.3690(6) Å, c = 8.0560(7) Å, V = 488.66(6) Å3 for R = La. Tb atoms were partially substituted by Y, Zr and La atoms because of closeness of atomic radii size. Under experimental condition capacity parameters were 1.81 H/f.u. for the Zr-containing electrode, 2.29 H/f.u. for the Y-containing electrode and 2.31 H/f.u. for the La-containing electrode. In the case of Li,Mg co-doped electrodes we observed more than 2.5 H/f.u. Cell parameters of the Zr- and La-containing phases after hydrogenation increased isotropically. Synthesized hydrides can be interpreted as superstructures with the Tb2Mn17C2.5-type (filled-up of Th2Ni17). The Y0.5Tb1.5Ni17-based electrode demonstrates the potential corrosion at -0.540 V, electrodes with the compositions Zr0.5Tb1.5Ni17 and La0.5Tb1.5Ni17 show -0.413 V and -0.405 V, respectively. Li and Mg-codoped electrodes shoved the corrosion potential -0.410 V (Tb2Ni16.4Li0.2Mg0.4) and -0.550 V for Tb2Ni15.6Li0.6Mg0.8, respectively.

References

J.-M. Joubert, M. Latroche, R. Černý, R. C. Bowman, A. Percheron-Guégan, K. Yvon, Crystallographic study of LaNi5-xSnx (0.2 ≤ x ≤ 0.5) compounds and their hydrides, J. Alloys. Compd., 293–295, 124 (1999); https://doi.org/10.1016/S0925-8388(99)00311-4.

F. Meli, A. Zuettel, L. Schlapbach, Effect of silicon on the properties of AB5-Based alloys for battery electrode application, Z. Phys. Chem., 183(1–2), 371 (1994); https://doi.org/10.1524/zpch.1994.183.Part_1_2.371.

I. Stetskiv, V. Kordan, I. Tarasiuk, V. Pavlyuk, Synthesis, crystal structure and physical properties of the TbCo4.5SixLi0.5-x solid solution, Physics and Chemistry of Solid State, 22(3), 577 (2021); https://doi.org/10.15330/pcss.22.3.577-584.

B. Rożdżyńska-Kiełbik, I. Stetskiv, V. Pavlyuk, A. Stetskiv, LaNi4.6Zn0.4-xLix (x ≤ 0.2) solid solution phases due to Li-doping, Solid State Sci., 113, 106552 (2021); https://doi.org/10.1016/j.solidstatesciences.2021.106552.

H. H. Van Mal, K. H. J. Buschow, A. R. Miedema, Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation, J. Less. Common. Met., 35(1), 65 (1974); https://doi.org/10.1016/0022-5088(74)90146-5.

W. Zhou, Zh. Ma, Ch. Wu, D. Zhu, L. Huang, Yu. Chen, The mechanism of suppressing capacity degradation of high-Al AB5-type hydrogen storage alloys at 60 °C, Int. J. Hydrog. Energy, 41, 1801 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.070.

F. Meli, A. Zuettel, L. Schlapbach, Surface and bulk properties of LaNi5-xSix alloys from the view point of battery applications, J. Alloys. Compd., 190(1), 17 (1992); https://doi.org/10.1016/0925-8388(92)90167-8.

N. O. Chorna, V. M. Kordan, A. M. Mykhailevych, O. Ya. Zelinska, A. V. Zelinskiy, K. Kluziak, R. Ya. Serkiz, V. V. Pavlyuk, Electrochemical hydrogenation, lithiation and sodiation of the GdFe2–xMx and GdMn2-xMx intermetallics, Voprosy khimii i khimicheskoi tekhnologii, 2, 139 (2021); https://doi.org/10.32434/0321-4095-2021-135-2-139-149.

Yu. Liu, H. Yuan, M. Guo, M. Jiang, Effect of Y element on cyclic stability of A2B7 -type La–Y–Ni-based hydrogen storage alloy, Int. J. Hydrog. Energy, 44, 22064 (2019); http://doi.org/10.1016/j.ijhydene.2019.06.081.

L. Wang, X. Zhang, Sh. Zhou, J. Xu, H. Yan, Qu. Luo, Qi. Li, Effect of Al content on the structural and electrochemical properties of A2B7 type La–Y–Ni based hydrogen storage alloy, Int. J. Hydrog. Energy, 45, 16677 (2020); http://doi.org/10.1016/j.ijhydene.2020.04.136.

J. Liu, Sh. Zhu, H. Cheng, Zh. Zheng, Zh. Zhu, K. Yan, Sh. Han, Enhanced cycling stability and high rate discharge ability of A2B7-type La–Mg–Ni-based alloys by in-situ formed (La,Mg)5Ni19 superlattice phase, J. Alloys Compd., 777, 1087 (2019); https://doi.org/10.1016/j.jallcom.2018.11.094.

V. Nytka, V. Kordan, A. Stetskiv, V. Pavlyuk, Tb2-xNdxZn17-yNiy (x = 0.5, y = 4.83): a new intermetallic with a maximum disordered structure and its hydrogen storage properties, Acta Cryst., C79, 257 (2023); https://doi.org/10.1107/S2053229623004369.

V. Pavlyuk, W. Ciesielski, N. Pavlyuk, D. Kulawik, M. Szyrej, B. Rozdzynska-Kielbik, V. Kordan, Electrochemical hydrogenation of Mg76Li12Al12 solid solution phase, Ionics, 25(6), 2701 (2019); https://doi.org/10.1007/s11581-018-2743-8.

V. Pavlyuk, W. Ciesielski, N. Pavlyuk, D. Kulawik, G. Kowalczyk, A. Balińska, M. Szyrej, B. Rozdzynska-Kielbik, A. Folentarska, V. Kordan, Hydrogenation and structural properties of

Mg100-2xLixAlx (x=12) limited solid solution, Mater. Chem. Phys., 223, 503 (2019); https://doi.org/10.1016/j.matchemphys.2018.11.007.

K. Dutta, O. N. Srivastava, Synthesis, structural characterization and hydrogenation behaviour of the new hydrogen storage composite alloy La2Mg17-x wt% LaNi5, J. Mater. Sci., 28, 3457 (1993), https://doi.org/10.1007/BF01159822.

V. Kordan, V. Nytka, I. Tarasiuk, O. Zelinska, V. Pavlyuk, Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17-xMx (M = Ni, Sn, Sb) solid solutions, Eur. J. Chem., 12(2), 197 (2021); https://doi.org/10.5155/eurjchem.12.2.197-203.2092.

V. Nytka, V. Kordan, V. Pavlyuk, La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure, Z. Krist.-New Cryst. St., 237(6), 1147 (2022); https://doi.org/10.1515/ncrs-2022-0411.

N. Pavlyuk, V. Nytka, V. Kordan, V. Pavlyuk, Crystal structure of the hydrogen storage active phase La12Mg46LiMn, Z. Krist.-New Cryst. St., 238(6), 1223 (2023); https://doi.org/10.1515/ncrs-2023-0416.

O. Isnard, S. Miraglia, J. L. Soubeyroux, D. Fruchart, A. Stergiou, Neutron diffraction study of the structural and magnetic properties of the R2Fe17Hx(Dx) ternary compounds (R = Ce, Nd and Ho), J. Less-Common Met., 162, 273 (1990); https://doi.org/10.1016/0022-5088(90)90343-I.

A. Percheron-Guégan, C. Lartigue, J. C. Achard, P. Germi, F. Tasset, Neutron and X-ray diffraction profile analyses and structure of LaNi5, LaNi5-xAlx and LaNi5-xMnx intermetallics and their hydrides (deuterides), J. Less. Common. Met., 74(1), 1 (1980); https://doi.org.10.1016/0022-5088(80)90063-6.

V. M. Kordan, O. I. Zaremba, P. Yu. Demchenko, V. V. Pavlyuk, Synthesis and electrochemical properties of LiyCaxNd1-xMnO3 solid solution, Acta Phys. Pol. A., 114(4), 273 (2022); https://doi.org/10.12693/APhysPolA.141.273.

V. Kordan, O. Zaremba, P. Demchenko, V. Pavlyuk, Synthesis and electrochemical properties of LiyM1-xCaxMnO3 (M = Pr, Eu) solid solutions, Physics and Chemistry of Solid State, 23(4), 699 (2022); https://doi.org/10.15330/pcss.23.4.699-704.

MTech. Retrieved from: http://chem.lnu.edu.ua/mtech/mtech.htm [in Ukrainian].

W. Kraus, G. Nolze, PowderCell for Windows (Federal Institute for Materials Research and Testing, Berlin, 2000).

D. Schwarzenbach, Program LATCON: refine lattice parameters. (University of Lausanne, Lausanne, 1966).

J. Rodriguez-Carvajal, The Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Toulouse, 1990), p. 127.

V. Kordan, V. Nytka, G. Kovalczyk, A. Balinska, O. Zelinska, R. Serkiz, V. Pavlyuk, Influence of doping elements on the electrochemical hydrogenation efficiency of Tb2Ni17-based phases, Chem. Met. Alloys, 10(1/2), 61 (2017); https://doi.org/10.30970/cma10.0355.

Downloads

Published

2024-06-03

How to Cite

Kordan, V., Nytka, V., Tarasiuk, I., Kluziak, K., & Pavlyuk, V. (2024). Synthesis and electrochemical hydrogenation of RxTb2-xNi17 and Tb2Ni17-yMy phases (R = Y, Zr, La; M = Li, Mg). Physics and Chemistry of Solid State, 25(2), 325–332. https://doi.org/10.15330/pcss.25.2.325-332

Issue

Section

Scientific articles (Chemistry)