Electronic Properties of Surface Vacancies in CdS Nanocrystals

Authors

  • I.M. Kupchak V. Lashkarev Institute of Semiconductor Physics, NAS Ukraine
  • N.F. Serpak V. Lashkarev Institute of Semiconductor Physics, NAS Ukraine
  • O.A. Kapush V. Lashkarev Institute of Semiconductor Physics, NAS Ukraine
  • D.V. Korbutyak V. Lashkarev Institute of Semiconductor Physics, NAS Ukraine

DOI:

https://doi.org/10.15330/pcss.19.1.34-39

Keywords:

Cadmium sulfide, nanocrystal, photoluminescence, vacancy, density functional method

Abstract

Structural and electronic characteristics of neutral and charged vacancies of cadmium and sulfur in CdS nanocrystals have been performed using the density functional method with hybrid exchange-correlation functional. Total and partial density of states, formation energies and the energies of thermodynamic transitions were calculated. Based on these theoretical findings and available experimental data, we can confirm the assumption, that the singly charged vacancies of cadmium are the centers of radiative recombination in such the structures.

References

[1] J. J. Ramsden, M. Grätzel, J. Chem. Soc. Faraday Trans, 1(80), 919 (1984).

[2] A. Dumbrava, C. Badea, G. Prodan, V. Ciupina, Chalcogenide Lett. 7, 111 (2010).

[3] S. V. Sorokin, S. V. Gronin, I. V. Sedova, M. V. Rakhlin, M. V. Baidakova, P. S. Kopyev, A. G. Vainilovich, E. V. Lutsenko, G. P. Yablonsky, N. A. Gamov, E. V. Zhdanova, M. M. Zverev, C. S. Revimov, and S. V. Ivanov, Fiz. Tehn. Poluprov., 49, 342 (2015).

[4] A. Mukherjee, B. Satpati, S. R. Bhattacharyya, R. Ghosh, P. Mitra, Phys. E 65, 51 (2015).

[5] S. Wang, W. Dong, X. Fang, S. Wu, R. Tao, Z. Deng, J. Shao, L. Hu, and J. Zhu, J. Power Sources, 273, 645 (2015).

[6] M. Tomakin, M. Altunbaş, E. Bacaksiz, Ş. Çelik, Thin Solid Films, 520, 2532 (2012).

[7] Y. Li, S. Q. Yuan, X. J. Li, Mater. Lett., 136, 67 (2014).

[8] C. Wu, L. Wang, Z. Zhang, X. Zhang, Q. Peng, J. Cai, Y. Yu, H. Guo, J. Jie, Front. Optoelectron. China, 4, 161 (2011).

[9] T. Inoshita, H. Sakaki, Phys. B, 227, 373 (1996).

[10] U. Bockelmann, T. Egeler, Phys. Rev. B, 46, 15574 (1992).

[11] A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, T. S. Perova, K. Berwick, Phys. Rev. B, 76, 45332 (2007).

[12] T. Orii, S. Kaito, K. Matsuishi, S. Onari, and T. Arai, J. Phys., 14, 9743 (2002).

[13] S. V. Rempel, A. D. Levin, A. Yu. Sadagov, A.A. Rempel, Fiz. Tverd. Tela 57, 1087 (2015).

[14] G. Y. Rudko, I. P. Vorona, V. I. Fediv, A. Kovalchuk, J. E. Stehr, B. D. Shanina, W. M. Chen, I. A. Buyanova, Nanoscale Res. Lett,. 12, 130 (2017).

[15] V. M. Skobeev, V. A. Smyntina, A. I. Sviridova, D. A. Strutz, and A. V. Tyurin, Journal of Applied Spectroscopy, 75, 556 (2008).

[16] P. Mandal, S. S. Talwar, S. S. Major, R. S. Srinivasa, J. Chem. Phys., 128, 114703 (2008).

[17] H. Lee, H. Yang, P.H. Holloway, Phys. B, 404, 4364 (2009).

[18] S. Q. Yuan, P. F. Ji, Y. Li, Y. L. Song, F. Q. Zhou, Adv. Optoelectron., 2015, 1 (2015).

[19] V. Smyntyna, B. Semenenko, V. Skobeeva, and M. Malushin, Electronics and Information Technologies, 45 (2012).

[20] C. G. Van de Walle, J. Appl. Phys. 95, 3851 (2004).

[21] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 14, 1347 (1993).

[22] A. Kasuya, R. Sivamohan, Y. A. Barnakov, I. M. Dmitruk, T. Nirasawa, V. R. Romanyuk, V. Kumar, S. V Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R. V Belosludov, V. Sundararajan, Y. Kawazoe, Nat. Mater., 3, 99 (2004).

[23] A. E. Kuznetsov, D. N. Beratan, J. Phys. Chem. C, 118, 7094 (2014).

[24] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 98, 11623 (1994).

[25] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 58, 1200 (1980).

[26] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 37, 785 (1988).

[27] A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

[28] P. J. Hay, W. R. Wadt, J. Chem. Phys., 82, 299 (1985).

[29] W. R. Wadt, P. J. Hay, J. Chem. Phys., 82, 284 (1985).

[30] P. J. Hay, W. R. Wadt, J. Chem. Phys., 82, 270 (1985).

[31] A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana, Phys. Chem. Chem. Phys., 17, 2850 (2015).

Published

2018-03-15

How to Cite

Kupchak, I., Serpak, N., Kapush, O., & Korbutyak, D. (2018). Electronic Properties of Surface Vacancies in CdS Nanocrystals. Physics and Chemistry of Solid State, 19(1), 34–39. https://doi.org/10.15330/pcss.19.1.34-39

Issue

Section

Review

Most read articles by the same author(s)