Facile SERS substrates from Ag nanostructures chemically synthesized on glass surfaces

Authors

  • N.V. Mazur V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine
  • O.A. Kapush V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine
  • O.F. Isaeva V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine
  • S.I. Budzulyak V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine
  • A.Yu. Buziashvili Institute of Food Biotechnology and Genomics, NAS of Ukraine, Kyiv, Ukraine
  • Y.V. Pirko Institute of Food Biotechnology and Genomics, NAS of Ukraine, Kyiv, Ukraine
  • M.А. Skoryk G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine,Kyiv, Ukraine
  • A.I. Yemets Institute of Food Biotechnology and Genomics, NAS of Ukraine, Kyiv, Ukraine
  • O.M. Hreshchuk V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine
  • V. Yukhymchuk V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine
  • V.M. Dzhagan V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.682-691

Keywords:

SERS substrate, LSPR, Tollens’ reaction, Raman scattering

Abstract

A quick one-step fabrication of efficient SERS substrates by a modified approach based on a silver-mirror reaction (using Tollens’ reagent) is reported. Commercially available microscope slides or cover glass (coverslips) were used as-received, without special surface treatment. In contrast to the commonly used two-step process, the composition of the Tollens reagent was modified to use a single-step process. The obtained rather homogeneous films of densely packed nanoislands are promising for application as substrates for Surface-Enhanced Raman Scattering (SERS), as demonstrated by several different kinds of molecules as analytes. In particular, the achieved level of detection of a standard dye analyte, down to 10-14 M of Rhodamine 6G, is in the range of best values reported in the literature. Low concentrations of some biomolecules are also detected, such as lysozyme (10-4 M), adenine (10-4 M), and salicylic acid (10-5 M). For some analytes, stronger SERS was observed in the drop, and for others after the solvent was dried. The possible reasons for this effect are described. By applying thermal annealing in the inert gas atmosphere, the Ag film morphology can be partially converted into a coral-like 3D structure that may be advantageous for the localization of the analyte in the “hot spots” and allow additional spectral tunability of the plasmon resonance.

 

References

L. Shi, L. Zhang, Y. Tian, Rational Design of Surface‐Enhanced Raman Scattering Substrate for Highly Reproducible Analysis, Analysis & Sensing. 3(2), e202200064 (2023); https://doi.org/10.1002/anse.202200064.

T. Moisoiu, M.P. Dragomir, S.D. Iancu, S. Schallenberg, G. Birolo, G. Ferrero, D. Burghelea, A. Stefancu, R.G. Cozan, E. Licarete, A. Allione, G. Matullo, G. Iacob, Z. Bálint, R.I. Badea, A. Naccarati, D. Horst, B. Pardini, N. Leopold, F. Elec, Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer, Molecular Medicine. 28 (2022) 39; https://doi.org/10.1186/s10020-022-00462-z.

M.V. Chursanova, V.M. Dzhagan, V.O. Yukhymchuk, O.S. Lytvyn, M.Y. Valakh, I.A. Khodasevich, D. Lehmann, D.R.T. Zahn, C. Waurisch, S.G. Hickey, Nanostructured silver substrates with stable and universal sers properties: Application to organic molecules and semiconductor nanoparticles, Nanoscale Res Lett. 5, 403 (2010), https://doi.org/10.1007/s11671-009-9496-2.

S.P. Usha, H. Manoharan, R. Deshmukh, R. Álvarez-Diduk, E. Calucho, V.V.R. Sai, A. Merkoçi, Attomolar analyte sensing techniques (AttoSens): A review on a decade of progress on chemical and biosensing nanoplatforms, Chem Soc Rev. 50, 13012 (2021); https://doi.org/10.1039/d1cs00137j.

R.E. Ionescu, E.N. Aybeke, E. Bourillot, Y. Lacroute, E. Lesniewska, P.M. Adam, J.L. Bijeon, Fabrication of annealed gold nanostructures on pre-treated glow-discharge cleaned glasses and their used for localized surface plasmon resonance (LSPR) and surface enhanced raman spectroscopy (SERS) detection of adsorbed (Bio)molecules, Sensors (Switzerland). 17, 236 (2017); https://doi.org/10.3390/s17020236.

L. Mikoliunaite, R.D. Rodriguez, E. Sheremet, V. Kolchuzhin, J. Mehner, A. Ramanavicius, D.R.T. Zahn, The substrate matters in the Raman spectroscopy analysis of cells, Sci Rep. 5, 13150 (2015); https://doi.org/10.1038/srep13150.

K. Malek, A. Jaworska, P. Krala, N. Kachamakova-Trojanowska, M. Baranska, Imaging of macrophages by surface enhanced raman spectroscopy (SERS), Biomed Spectrosc Imaging. 2, 349 (2013); https://doi.org/10.3233/BSI-130052.

A. Muravitskaya, A. Rumyantseva, S. Kostcheev, V. Dzhagan, O. Stroyuk, P.-M. Adam, Enhanced Raman scattering of ZnO nanocrystals in the vicinity of gold and silver nanostructured surfaces, Opt Express. 24, A168 (2016); https://doi.org/10.1364/OE.24.00A168.

M. Rahaman, A.G. Milekhin, A. Mukherjee, E.E. Rodyakina, A.V. Latyshev, V.M. Dzhagan, D.R.T. Zahn, The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering, Faraday Discuss. 214, 309 (2019); https://doi.org/10.1039/c8fd00142a.

S. Fornasaro, F. Alsamad, M. Baia, L.A.E. Batista De Carvalho, C. Beleites, H.J. Byrne, A. Chiadò, M. Chis, M. Chisanga, A. Daniel, J. Dybas, G. Eppe, G. Falgayrac, K. Faulds, H. Gebavi, F. Giorgis, R. Goodacre, D. Graham, P. La Manna, S. Laing, L. Litti, F.M. Lyng, K. Malek, C. Malherbe, M.P.M. Marques, M. Meneghetti, E. Mitri, V. Mohaček-Grošev, C. Morasso, H. Muhamadali, P. Musto, C. Novara, M. Pannico, G. Penel, O. Piot, T. Rindzevicius, E.A. Rusu, M.S. Schmidt, V. Sergo, G.D. Sockalingum, V. Untereiner, R. Vanna, E. Wiercigroch, A. Bonifacio, Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study, Anal Chem. 92, 4053 (2020); https://doi.org/10.1021/acs.analchem.9b05658.

D.B. Grys, B. de Nijs, J. Huang, O.A. Scherman, J.J. Baumberg, SERSbot: Revealing the Details of SERS Multianalyte Sensing Using Full Automation, ACS Sens. 6, 4507 (2021); https://doi.org/10.1021/acssensors.1c02116.

T. Itoh, M. Procházka, Z.C. Dong, W. Ji, Y.S. Yamamoto, Y. Zhang, Y. Ozaki, Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications, Chem Rev. 123, 1552 (2022); https://doi.org/10.1021/acs.chemrev.2c00316.

O.M. Buja, O.D. Gordan, N. Leopold, A. Morschhauser, J. Nestler, D.R.T. Zahn, Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate, Beilstein Journal of Nanotechnology., 8, 237 (2017); https://doi.org/10.3762/bjnano.8.26.

V. Moisoiu, S.D. Iancu, A. Stefancu, T. Moisoiu, B. Pardini, M.P. Dragomir, N. Crisan, L. Avram, D. Crisan, I. Andras, D. Fodor, L.F. Leopold, C. Socaciu, Z. Bálint, C. Tomuleasa, F. Elec, N. Leopold, SERS liquid biopsy: An emerging tool for medical diagnosis, Colloids Surf B Biointerfaces., 208, 112064 (2021); https://doi.org/10.1016/j.colsurfb.2021.112064.

S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J. a Dieringer, R.P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots, Phys. Chem. Chem. Phys. 15, 21 (2013); https://doi.org/10.1039/c2cp42598j.

M.M. Dvoynenko, H.H. Wang, H.H. Hsiao, Y.L. Wang, J.K. Wang, Study of Signal-to-Background Ratio of Surface-Enhanced Raman Scattering: Dependences on Excitation Wavelength and Hot-Spot Gap, Journal of Physical Chemistry C. 121, 26438 (2017); https://doi.org/10.1021/acs.jpcc.7b08362.

I. Krishchenko, S. Kravchenko, E. Manoilov, A. Korchovyi, B. Snopok, Effect of Intense Hot-Spot-Specific Local Fields on Fluorescein Adsorbed at 3D Porous Gold Architecture: Evolution of SERS Amplification and Photobleaching under Resonant Illumination, Engineering Proceedings. 35, 32 (2023); https://doi.org/10.3390/iecb2023-14606.

V. Dan’ko, M. Dmitruk, I. Indutnyi, S. Mamykin, V. Myn’ko, P. Shepeliavyi, M. Lukaniuk, P. Lytvyn, Au Gratings Fabricated by Interference Lithography for Experimental Study of Localized and Propagating Surface Plasmons, Nanoscale Res Lett. 12, 190 (2017); https://doi.org/10.1186/s11671-017-1965-4.

M. Rahaman, S. Moras, L. He, T.I. Madeira, D.R.T. Zahn, Fine-tuning of localized surface plasmon resonance of metal nanostructures from near-Infrared to blue prepared by nanosphere lithography, J Appl Phys. 128, 233104 (2020); https://doi.org/10.1063/5.0027139.

B. Tim, P. Błaszkiewicz, M. Kotkowiak, Recent advances in metallic nanoparticle assemblies for surface-enhanced spectroscopy, Int J Mol Sci. 23, 291 (2022); https://doi.org/10.3390/ijms23010291.

L. Mikac, M. Ivanda, M. Gotić, V. Janicki, H. Zorc, T. Janči, S. Vidaček, Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres, J Mol Struct. 1146, 530 (2017); https://doi.org/10.1016/j.molstruc.2017.06.016.

O. Smirnov, V. Dzhagan, M. Kovalenko, O. Gudymenko, V. Dzhagan, N. Mazur, O. Isaieva, Z. Maksimenko, S. Kondratenko, M. Skoryk, V. Yukhymchuk, ZnO and Ag NP-decorated ZnO nanoflowers: green synthesis using Ganoderma lucidum aqueous extract and characterization, RSC Adv. 13, 756 (2023);. https://doi.org/10.1039/d2ra05834k.

A. Mukherjee, F. Wackenhut, A. Dohare, A. Horneber, A. Lorenz, H. Müchler, A.J. Meixner, H.A. Mayer, M. Brecht, Three-Dimensional (3D) Surface-Enhanced Raman Spectroscopy (SERS) Substrates: Fabrication and SERS Applications, Journal of Physical Chemistry C. 127, 13689 (2023); https://doi.org/10.1021/acs.jpcc.3c02410.

M.V. Chursanova, L.P. Germash, V.O. Yukhymchuk, V.M. Dzhagan, I.A. Khodasevich, D. Cojoc, Optimization of porous silicon preparation technology for SERS applications, Appl Surf Sci. 256, (2010); https://doi.org/10.1016/j.apsusc.2009.12.036.

V.O. Yukhymchuk, O.M. Hreshchuk, V.M. Dzhagan, N.A. Matveevskaya, T.G. Beynik, M.Y. Valakh, M. V. Sakhno, M.A. Skoryk, S.R. Lavoryk, G.Y. Rudko, N.A. Matveevskaya, T.G. Beynik, M.Y. Valakh, Experimental Studies and Modeling of “ Starlike ” Plasmonic Nanostructures for SERS Application, Phys. Stat. Sol. (b). 256, 1800280 (2019); https://doi.org/10.1002/pssb.201800280.

V.M. Dzhagan, Ya.V. Pirko, A.Yu. Buziashvili, S.G. Plokhovska, M.M. Borova, A.I. Yemets, N.V. Mazur, O.A. Kapush, V.O. Yukhymchuk, Controlled aggregation of plasmonic nanoparticles to enhance the efficiency of SERS substrates, Ukrainian Journal of Physics. 67, 80 (2022); https://doi.org/10.15407/ujpe67.1.80.

M. Fränzl, S. Moras, O. D. Gordan, D. R. T. Zahn, Interaction of One-Dimensional Photonic Crystals and Metal Nanoparticle Arrays and Its Application for Surface-Enhanced Raman Spectroscopy, The Journal of Physical Chemistry C. 122, 10153 (2018); https://doi.org/10.1021/acs.jpcc.8b02241.

M. Borovaya, I. Horiunova, S. Plokhovska, N. Pushkarova, Y. Blume, A. Yemets, Institute, Synthesis , Properties and Bioimaging Applications of Silver-Based Quantum Dots, Int. J. Mol. Sci. 22, 12202 (2021).

J. Krajczewski, V. Joubert, A. Kudelski, Light-induced transformation of citrate-stabilized silver nanoparticles : Photochemical method of increase of SERS activity of silver colloids, Colloids Surf A Physicochem Eng Asp. 456, 41 (2014). https://doi.org/10.1016/j.colsurfa.2014.05.005.

A. Jaworska, T. Wojcik, K. Malek, U. Kwolek, M. Kepczynski, A.A. Ansary, S. Chlopicki, M. Baranska, Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells, Microchimica Acta. 182, 119 (2015); https://doi.org/10.1007/s00604-014-1307-5.

V. V. Strelchuk, O.F. Kolomys, E.B. Kaganovich, I.M. Krishchenko, B.O. Golichenko, M.I. Boyko, S.O. Kravchenko, I. V. Kruglenko, O.S. Lytvyn, E.G. Manoilov, I.M. Nasieka, Optical characterization of SERS substrates based on porous au films prepared by pulsed laser deposition, J Nanomater. 2015, 203515 (2015); https://doi.org/10.1155/2015/203515.

I. Krishchenko, S. Kravchenko, I. Kruglenko, E. Manoilov, B. Snopok, 3D Porous Plasmonic Nanoarchitectures for SERS-Based Chemical Sensing, Engineering Proceedings. 27, 41 (2022); https://doi.org/10.3390/ecsa-9-13200.

V. Dzhagan, O. Smirnov, M. Kovalenko, N. Mazur, O. Hreshchuk, N. Taran, S. Plokhovska, Y. Pirko, A. Yemets, V. Yukhymchuk, D.R.T. Zahn, Spectroscopic Study of Phytosynthesized Ag Nanoparticles and Their Activity as SERS Substrate, Chemosensors. 10 (2022); https://doi.org/10.3390/chemosensors10040129.

N.J. Borys, J.M. Lupton, Surface-enhanced light emission from single hot spots in tollens reaction silver nanoparticle films: Linear versus nonlinear optical excitation, Journal of Physical Chemistry C. 115, 13645 (2011); https://doi.org/10.1021/jp203866g.

T. Xu, X. Wang, X. Zhang, Z. Bai, Compact Ag nanoparticles anchored on the surface of glass fiber filter paper for SERS applications, Appl Phys A Mater Sci Process. 128, (2022); https://doi.org/10.1007/s00339-022-05459-3.

L. Qu, L. Dai, Novel silver nanostructures from silver mirror reaction on reactive substrates, Journal of Physical Chemistry B. 109, 13985 (2005). https://doi.org/10.1021/jp0515838.

U. Malik, D. Korcoban, S. Mehla, A.E. Kandjani, Y.M. Sabri, S. Balendhran, S.K. Bhargava, Fabrication of fractal structured soot templated titania-silver nano-surfaces for photocatalysis and SERS sensing, Appl Surf Sci. 594 (2022); https://doi.org/10.1016/j.apsusc.2022.153383.

A. Mukherjee, F. Wackenhut, A. Dohare, A. Horneber, A. Lorenz, H. Müchler, A.J. Meixner, H.A. Mayer, M. Brecht, Three-Dimensional (3D) Surface-Enhanced Raman Spectroscopy (SERS) Substrates: Fabrication and SERS Applications, Journal of Physical Chemistry C. 127, 13689 (2023); https://doi.org/10.1021/acs.jpcc.3c02410.

M.L. Cheng, B.C. Tsai, J. Yang, Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution, Anal Chim Acta. 708, 89 (2011); https://doi.org/10.1016/j.aca.2011.10.013.

H. Zhai, C. Zhu, X. Wang, Y. Yuan, H. Tang, Arrays of Ag-nanoparticles decorated TiO2 nanotubes as reusable three-dimensional surface-enhanced Raman scattering substrates for molecule detection, Front Chem. 10 (2022); https://doi.org/10.3389/fchem.2022.992236.

Y. Zhao, W. Luo, P. Kanda, H. Cheng, Y. Chen, S. Wang, S. Huan, Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder, Talanta. 113, 7 (2013); https://doi.org/10.1016/j.talanta.2013.03.075.

K.L.W. L.F. Fieser, Organic Experiments, D.C. Health and Co., Lexington, 1987.

S. Adomavičiūtė-Grabusovė, S. Ramanavičius, A. Popov, V. Šablinskas, O. Gogotsi, A. Ramanavičius, Selective enhancement of sers spectral bands of salicylic acid adsorbate on 2d ti3 c2 tx-based mxene film, Chemosensors. 9 (2021); https://doi.org/10.3390/chemosensors9080223.

A. Shiohara, Y. Wang, L.M. Liz-Marzán, Recent approaches toward creation of hot spots for SERS detection, Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 21, 2 (2014); https://doi.org/10.1016/j.jphotochemrev.2014.09.001.

C. Farcau, S. Astilean, Mapping the SERS efficiency and hot-spots localization on gold film over nanospheres substrates, Journal of Physical Chemistry C. 114, 11717 (2010); https://doi.org/10.1021/jp100861w.

C. Fang, A.V. Ellis, N.H. Voelcker, Electrochemical synthesis of silver oxide nanowires, microplatelets and application as SERS substrate precursors, Electrochim Acta. 59, 346 (2012); https://doi.org/10.1016/j.electacta.2011.10.068.

O.L. Stroyuk, V.M. Dzhagan, A.V. Kozytskiy, A.Y. Breslavskiy, S.Y. Kuchmiy, A. Villabona, D.R.T. Zahn, Nanocrystalline TiO2/Au films: Photocatalytic deposition of gold nanocrystals and plasmonic enhancement of Raman scattering from titania, Mater Sci Semicond Process. 37, (2015); https://doi.org/10.1016/j.mssp.2014.12.033.

V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J.P. Hill, K. Ariga, Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate, Journal of Physical Chemistry C. 116, 2683 (2012); https://doi.org/10.1021/jp209251y.

B. Giese, D. McNaughton, Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces, Journal of Physical Chemistry B. 106, 101 (2002); https://doi.org/10.1021/jp010789f.

R.M. Banciu, N. Numan, A. Vasilescu, Optical biosensing of lysozyme, J Mol Struct. 1250, (2022). https://doi.org/10.1016/j.molstruc.2021.131639.

G. Das, F. Mecarini, F. Gentile, F. De Angelis, H.G. Mohan Kumar, P. Candeloro, C. Liberale, G. Cuda, E. Di Fabrizio, Nano-patterned SERS substrate: Application for protein analysis vs. temperature, Biosens Bioelectron. 24, 1693 (2009); https://doi.org/10.1016/j.bios.2008.08.050.

V.A. Dan’ko, I.Z. Indutnyi, V.I. Mynko, P.M. Lytvyn, M. V. Lukaniuk, H. V. Bandarenka, A.L. Dolgyi, S. V. Redko, Formation of laterally ordered arrays of noble metal nanocavities for sers substrates by using interference photolithography, Semiconductor Physics, Quantum Electronics and Optoelectronics. 24, 48 (2021); https://doi.org/10.15407/spqeo24.01.48.

J. Hu, R. Sheng Sheng, Z.X. San, Y. Zeng, Surface enhanced Raman spectroscopy of lysozyme, Spectrochirnica Acta. 51, 1087 (1995).

N.R. Agarwal, M. Tommasini, E. Ciusani, A. Lucotti, S. Trusso, P.M. Ossi, Protein-Metal Interactions Probed by SERS: Lysozyme on Nanostructured Gold Surface, Plasmonics. 13, 2117 (2018); https://doi.org/10.1007/s11468-018-0728-0.

D. Zhang, O. Neumann, H. Wang, V.M. Yuwono, A. Barhoumi, M. Perham, J.D. Hartgerink, P. Wittung-Stafshede, N.J. Halas, Gold Nanoparticles Can Induce the Formation of Protein-based Aggregates at Physiological pH, Nano Lett. 9, 666 (2009); https://doi.org/10.1021/nl803054h.

Worldwide proteine data bank. DOI: https://doi.org/10.2210/pdb1dpx/pdb, (n.d.).

Y. Wang, Y.-S. Li, Z. Zhang, D. An, Surface-enhanced Raman scattering of some water insoluble drugs in silver hydrosols, n.d. www.elsevier.com/locate/saa.

S.D. Iancu, A. Stefancu, V. Moisoiu, L.F. Leopold, N. Leopold, The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes, Beilstein Journal of Nanotechnology. 10, 2338 (2019); https://doi.org/10.3762/bjnano.10.224.

Y. Fleger, Y. Mastai, M. Rosenbluh, D.H. Dressler, SERS as a probe for adsorbate orientation on silver nanoclusters, Journal of Raman Spectroscopy. 40, 1572 (2009); https://doi.org/10.1002/jrs.2300.

Downloads

Published

2023-12-13

How to Cite

Mazur, N., Kapush, O., Isaeva, O., Budzulyak, S., Buziashvili, A., Pirko, Y., … Dzhagan, V. (2023). Facile SERS substrates from Ag nanostructures chemically synthesized on glass surfaces. Physics and Chemistry of Solid State, 24(4), 682–691. https://doi.org/10.15330/pcss.24.4.682-691

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)

1 2 > >>