The crystal structure of R3Fe0.1Ga1.6S7 chalcogenides (R – La, Ce, Pr and Tb)
DOI:
https://doi.org/10.15330/pcss.25.4.677-683Keywords:
crystal structure, rare earth elements, chalcogenides, X-ray powder method, EDAX analysisAbstract
The paper reports the study of the crystal structure of chalcogenides of the composition R3Fe0.1Ga1.6S7 (R = La, Ce, Pr and Tb) as promising materials predicted to possess interesting nonlinear optical and electrical properties. Samples of stoichiometric composition were synthesized by co-melting the elements in quartz containers evacuated to a residual pressure of 10–2 Pa at the maximum synthesis temperature of 1100 °C. The crystal structure of the chalcogenides La3Fe0.1Ga1.6S7 {a = 10.1884(6) Å, c = 6.0515(4) Å}, Ce3Fe0.1Ga1.6S7 {a = 10.0864(4) Å, c = 6.0440(3) Å}, Pr3Fe0.1Ga1.6S7 {a = 9.9853(3) Å, c = 6.0648(2) Å} and Tb3Fe0.1Ga1.6S7 {a = 9.6692(7) Å, c = 6.0799(5) Å} was studied by X-ray powder method. It was determined that the structure of the synthesized phases belongs to the hexagonal symmetry (La3CuSiS7 structure type; space group P63). The structure of the complex chalcogenides (A), (B), (C) and (D) is based on the R3Ga1.67S7 sulfides (R = La, Ce, Pr, and Tb) by substituting gallium atoms in the 2a sites with atoms of statistical mixture M1{0.57(2) Ga + 0.10(2) Fe}, M2{0.56(1) Ga + 0.10(2) Fe}, M3 {0.61(8) Ga + 0.09(1) Fe} and M4 {0.57(2) Ga + 0.10(2) Fe}, respectively. Rare earth atoms are localized in the 6c sites and center sulfur atoms to form trigonal prisms with an additional atom [R 3S13S21S3]. Atoms of statistical mixtures M1, M2, M3, M4 are localized in the 2a sites forming [M 6S2] octahedra. Ga atoms in the 2b sites are surrounded by four sulfur atoms [Ga 3S11S3].
References
Jean-Claude Bunzli, V.K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, Elsevier Science Publishers B.V., 50, 480 (2016).
V.A. Starodub, Ternary and quaternary chalcogenides of group IB elements, Russ. Chem. Rev. 68, 10 (1999); https://doi.org/10.1070/RC1999v068n10ABEH000480.
B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photon., 5, 141 (2011); https://doi.org/10.1038/nphoton.2011.309.
N.A. Spaldin, Magnetic Materials: Fundamentals and Applications. Cambridge University Press. Second edition, (2010); https://doi.org/10.1017/CBO9780511781599.
T.M. Tritt, Thermal Conductivity: Theory, Properties, and Applications. Springer Science & Business Media., 105 (2005); https://doi.org/10.1007/b136496.
L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett., 98 (2007); https://doi.org/10.1103/PhysRevLett.98.106803.
Y. Shi, C. Sturm, H. Kleinke, Chalcogenides as thermoelectric materials, J. Solid State Chem., 270, 273 (2019); https://doi.org/10.1016/j.jssc.2018.10.049.
L.D. Gulay, M. Daszkiewicz, I.P. Ruda, O.V. Marchuk, La2Pb(SiS4)2, Acta Cryst. C., 66, 3 (2010); https://doi.org/10.1107/S0108270110000247.
N.M. Blashko, O.V. Smitiukh, O.V. Marchuk, The crystal structure of La3Pb0.1Ga1.6S7 and La3Pb0.1Ga1.6S7 compounds, Physics and chemistry of solid state, 23(1) (2022); https://doi.org/10.15330/pcss.23.1.96-100.
A.K. Iyer, B.W. Rudyk, X. Lin, H. Singh, A.Z. Sharma, C.R. Wiebe, A. Mar, Noncentrosymmetric rare-earth copper gallium chalcogenides RE3CuGaCh7 (RE = La – Nd; Ch = S, Se): An unexpected combination. J. Solid State Chem., 229, 150 (2015); https://doi.org/10.1016/j.jssc.2015.05.016.
A.K. Iyer, W. Yin, B.W. Rudyk, X. Lin, T. Nilges, A. Mar, Metal ion displacements in noncentrosymmetric chalcogenides La3Ga1.67S7, La3Ag0.6GaCh7 (Ch = S, Se) and La3MGaSe7 (M = Zn, Cd). J. Solid State Chem., 243, 221 (2016); https://doi.org/10.1016/j.jssc.2016.08.031.
Y.F. Shi, Y.K. Chen, M.K. Chen, L.M. Wu, H. Lin, L.J. Zhou, L. Chen, Strongest second harmonic generation in the polar R3MTQ7 family: atomic distribution induced nonlinear optical cooperation. Chem. Mater., 27, 1876 (2015); https://doi.org/10.1021/ acs.chemmater.5b00177.
H.J. Zhao, Syntheses, crystal structures, and NLO properties of the quaternary sulfides RE3Sb0.33SiS7 (RE = La, Pr). J. Solid State Chem., 227, 5 (2015); https://doi.org/10.1016/j.jssc.2015.03.010.
B.W. Rudyk, S.S. Stoyko, A.O. Oliynyk, A. Mar, Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M = Fe, Co, Ni; Ch = S, Se). J. Solid State Chem., 210, 79, (2014); https://doi.org/10.1016/j.jssc.2013.11.003.
L. Akselrud, Y. Grin, WinCSD: Software package for crystallographic calculations (Version 4), J. Appl. Cryst., 47, 803 (2014); https://doi.org/10.1107/s1600576714001058
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst., 44, 1272 (2011); https://doi.org/10.1107/S0021889811038970.
A.M. Loireau-Lozach, M. Guittard, J. Flahaut, Systemes L2S3 – Ga2S3 (L = La, Ce, Dy, Er et Y), Mat. Res. Bull. 12, 881, (1977).
M. Patrie, M. Guittard, Chimie minerale. Sur les composes du type Ce6Al10/3S14, C. R. Acad. Sci., C, 268, 1136 (1969).
G.V. Samsonov, Y.B. Paderno, M.I. Murguzov, V.P. Fedorchenko, Z.Sh. Karaev, Gallochalcogenides of the rare-earth metals, Soviet powder metallurgy and metal ceramics 6, 75 (1967); https://doi.org/10.1007/BF00773388.
N.M Blashko, O.V. Marchuk, I.D. Olekseyuk, A.O. Fedorchuk, Krystalichna struktura spoluky Tb3Ga1.67S7, Naukovyi visnyk Chernivetskoho universytetu. Khimiia., 781 (2016). [in Ukraine].
M. Guittard, M. Julien-Pouzol, Les composes hexagonaux de type La3CuSiS7, Bulletin de la Societe Chimique de France, 6, 2207 (1972).
N. Wiberg, E. Wiberg, A. Holleman, Lehrbuch der Anorganischen Chemie, Walter de Gruyter. 102. Auflage, 2003-2004 (2007).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 N.M. Blashko, O.V. Marchuk, A.O. Fedorchuk
This work is licensed under a Creative Commons Attribution 3.0 Unported License.