Band Structure Calculation and Optical Properties of Ag3AsS3 Crystals

  • M.Ya. Rudysh Lesya Ukrainka Volyn National University, Lutsk, Ukraine; J. Dlugosz University in Częstochowa, Czestochowa, Poland; Ivan Franko National University of Lviv, Lviv, Ukraine
  • O.V. Smitiukh Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • G.L. Myronchuk Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • S.M. Ponedelnyk Lesya Ukrainka Volyn National University, Lutsk, Ukraine
  • O.V. Marchuk Lesya Ukrainka Volyn National University, Lutsk, Ukraine
Keywords: Ag3AsS3, band structure, density functional theory, optical spectrum


In the study, band structure calculation in the points of high symmetry of the first Brillouin zone and alongside the lines that connect them has been derived by using CASTEP programs in which the pseudopotential method with the basis in the form of plane-waves is realized. The calculated value of the lattice parameters using GGA functional is well correlated with experimental data. According to the band diagram that was built for the Ag3AsS3 crystal using GGA method, band gap has an indirect type. The calculated value of the band gap is  = 1.22 еV. The experimental value of the band gap obtained by Tauc’s method is  = 2.01 еV,  = 2.17 еV. Full and partial density of N(E) states for contributions of separate atoms has been calculated. As a result, the top of the valence band is formed by 3p-states of S atoms and the bottom of the conduction band is formed by 5s-states of Ag atoms and 3p-states of S atoms.


V.V. Zalamai, A.V. Tiron, I.G. Stamov, S.I. Beril, Wavelength modulation optical spectra of Ag3AsS3 crystals in the energy gap, Optical Materials, 129, 112560 (2022);

H. Lin, W.B. Wei, H. Chen, X.T. Wu, Q.L. Zhu, Rational design of infrared nonlinear optical chalcogenides by chemical substitution, Coord. Chem. Rev. 406, 213150 (2020);

Kui Wu, Shilie Pa,. A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances, Coord. Chem. Rev. 377, 191 (2018);

Fei Liang, Lei Kang, Zheshuai Lin, and Yicheng Wu, Mid-Infrared Nonlinear Optical Materials Based on Metal Chalcogenides: Structure–Property Relationship Cryst, Growth Des., 17(4), 2254 (2017);

A. Abudurusuli, J. Li, S. Pan, A review on the recently developed promising infrared nonlinear optical materials, Dalt. Trans. 50, 3155 (2021);

V. Kavaliukė, T. Šalkus, A. Kežionis, M.M. Pop, I.P. Studenyak, Ag3AsS3-As2S3 composite: Detailed impedance spectroscopy study, Solid State Ionics, 383, 115971 (2022);

V. S. Bilanych, R. Yu. Buchuk, K. V. Skubenych, I. I. Makauz, I. P. Studeniak, Relaxation Processes in Silver Containing Superionic Composites in the System Ag3AsS3-As2S3, Physics and Chemistry of Solid State, 13 (3), 625 (2012). Rezhym dostupu: Ukrainian)

V. A. Bordovsky, N. Yu. Gunia, R. A. Castro, High-frequency dielectric study of proustite crystals Ag3AsS3, Journal of Physics: Conference Series, 572, 012019 (2014);

O.V. Smitiukh, O.V. Marchuk, Y.M. Kogut, V.O. Yukhymchuk, N.V. Mazur, G.L.Myronchuk, S.M. Ponedelnyk, O.I. Cherniushok, T.O. Parashchuk, O.Y. Khyzhun, К.T. Wojciechowski, A.O. Fedorchuk, Effect of rare-earth doping on the structural and optical properties of the Ag3AsS3 crystals, Optical and Quantum Electronics, 54:4, 224 (2022);

S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Kristallogr, 220, 567 (2005);

P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964);

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41, 7892 (1990);

J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981);

H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188 (1976);

B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, Relaxation of Crystals with the Quasi-Newton Method, Journal of Computational Physics, 131, 233 (1997);

A. Gagor, A. Pawłowski, A. Pietraszko, Silver transfer in proustite Ag3AsS3 at high temperatures: Conductivity and single-crystal X-ray studies, J. Solid State Chem. 182(3), 451 (2009); DOI:10.1016/j.jssc.2008.11.005.

Ya.O. Dovgii, I.V. Kityk, Band Structure and Nonlinear Optical Susceptibilities of Proustite (Ag3AsS3), Phys. Stat. Sol. (b), 166, 395 (1991);

Marvin J. Weber, Handbuk of optical materials (CRC Press, 2002).

Mark Fox, Optical properties of solids (Oxford University Press, Oxford (2001)).

M. Dressel, B. Gompf, D. Faltermeier, A.K. Tripathi, J. Pflaum and M. Schubert, Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene, Opt.Express 16. 19770- (2008);

Ya.O. Dovhyj I.V. Kityk, The electronic structure and optics of the nonlinear crystals. 176 p. (Monograph. –Lviv. Svit publisher. 1996).

Sonali Saha, T.P. Sinha and Abhijiti Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62, 8828 (2000);

M.Ya. Rudysh, P.A. Shchepanskyi, A.O. Fedorchuk, M.G. Brik, V.Yo. Stadnyk, G.L. Myronchuk, E.A. Kotomin, M. Piasecki, Impact of anionic system modification on the desired properties for CuGa(S1−xSex)2 solid solutions, Computational Materials Science, 196, 110553 (2021);

M.Ya. Rudysh, M. Piasecki, G.L. Myronchuk, P.A. Shchepanskyi, V.Yo. Stadnyk, O.R. Onufriv, M.G. Brik, AgGaTe2 – The thermoelectric and solar cell material: Structure, electronic, optical, elastic and vibrational features, Infrared Physics and Technology, 111, 103476 (2020);

How to Cite
RudyshM., SmitiukhO., MyronchukG., PonedelnykS., & MarchukO. (2023). Band Structure Calculation and Optical Properties of Ag3AsS3 Crystals. Physics and Chemistry of Solid State, 24(1), 17-22.
Scientific articles (Physics)