Thermal conductivity of GeBiTe solid solutions


  • О.М. Matkivskyi Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • V.R. Balan Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • М.О. Halushchak Ivano-Frankivsk National Technical University of Oil and Gas Ivano-Frankivsk, Ukraine
  • І.B. Dadiak Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • G.D. Mateik Ivano-Frankivsk National Technical University of Oil and Gas Ivano-Frankivsk, Ukraine
  • І.V. Horichok Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine



germanium telluride, thermoelectric properties, coefficient of thermal conductivity


The paper calculates the electronic and lattice components of thermal conductivity coefficients for GeBiTe solid solutions. The calculation was carried out using two different models of the band structure of GeTe, which differ in the relative location of the zones of heavy and light holes. The first of the models is generally accepted for A4B6 compounds and assumes the location of the zone of light holes above the zone of heavy ones in the energy spectrum. Another model, obtained on the basis of DFT calculation, predicts the location of the zone of light holes below the zone of heavy ones. A significant difference was established in the numerical values of the electronic and lattice components of the thermal conductivity coefficients, depending on the adopted model. The influence of other calculation parameters on the investigated values was analyzed.


J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I.T. Witting, A. Faghaninia, Y. Chen, A. Jain, L. Chen, G.J. Snyder, Y. Pei, Low-Symmetry Rhombohedral GeTe Thermoelectrics, Joule, 2, 976 (2018);

Min Hong, Zhi-Gang Chen, Lei Yang, Yi-Chao Zou, Matthew S. Dargusch, Hao Wang, and Jin Zou, Realizing ZT of 2.3 in Ge1−x−ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping, Adv. Mater., 1705942 (2018);

S. Perumal, M. Samanta, T. Ghosh, U.S. Shenoy, A.K. Bohra, S. Bhattacharya et al, Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In, Joule, 3, 2565(2019);

S. Perumal, P. Bellare, U.S. Shenoy, U.V. Waghmare, and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring, Chem. Mater., 29, 10426 (2017);

David J. Singh, Optical properties of cubic and rhombohedral GeTe, J. Appl. Phys., 113, 203101 (2013);

Juan Li, Xinyue Zhang, Siqi Lin, Zhiwei Chen, and Yanzhong Pei, Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying, Chem. Mater., 29, 605 (2017);

A. Kumar, P. Bhumla, T. Parashchuk, S. Baran, S. Bhattacharya, and K.T. Wojciechowski, Engineering Electronic Structure and Lattice Dynamics to Achieve Enhanced Thermoelectric Performance of Mn–Sb Co-Doped GeTe, Chem. Mater. 33, 3611 (2021);

Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications, Phys. Status Solidi RRL – Rapid Research Letters, 1, 232 (2007);

Y. Gelbstein, J. Davidow, Highly efficient functional GexPb1−xTe based thermoelectric alloys, Phys. Chem. Chem. Phys., 16, 20120 (2014);

Y. Gelbstein, J. Davidow, E. Leshem, O. Pinshow, and S. Moisa, Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1-xTe thermoelectric alloys, Phys. Status Solidi B, 251(7), 1431 (2014);

L.E. Shelimova, N.H. Abrikosov, V. V. Zhdanov, Ge-Te system in the GeTe compound, Journ. Inojg. Chem., 10(5), 1200 (1965).

Z. Liu, N. Sato, Q. Guo, W. Gao, T. Mori, Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction, NPG Asia Mater., 12, 1 (2020);

A. Edwards, Theory of Intrinsic Defects in Crystalline GeTe and of Their Role in Free Carrier Transport. Final Report, Kirtland: Air force research laboratory (2008).

P.I. Konsyn, Temperature dependences of the band gap and electronic spectra of ferroelectric semiconductors of the A4B6 type, Solid State Physics, 24(5), 1321 (1982).

L.M. Sysoeva, E.Ya. Lev, N.V. Kolomoets, Changing the energy spectrum of germanium telluride current carriers by creating solid solutions based on it, Physics of Thin Films, 3(4), 604 (1969).

T. Parashchuk, A. Shabaldin, O. Cherniushok, P. Konstantinov, I. Horichok, Origins of the enhanced thermoelectric performance for p-type Ge1-xPbxTe alloys, Physica B: Condensed Matter, 596(46), 412397 (2020);

Z. Dashevsky, I. Horichok, M. Maksymuk, A. R. Muchtar, B. Srinivasan, T. Mori, Feasibility of high performance in p-type Ge1-xBixTe materials for thermoelectric modules, J. Am. Ceram. Soc., 1 (2022);

B.M. Askerov, Electron Transport Phenomena in Semiconductors, (1994);

P.B. Littlewood, Phase transitions and optical properties of IV-Vl compounds, Cond-Mat. Mtrl.-Sci, 48, 238 (2007).

P.M. Nicolic, Some optical propperties of lead-tin-chalcogenide alloys, Matematica i fizika, 354 (1971).

Y.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides. Ed. By L. S. Stil’bans, Springer Science+Business Media New York (1970).

O.Z Khshanovska, M.O. Halushchak, O.M. Matkivskyi, I.V. Horichok, Analysis of heat conductivity mechanisms in PbSnTe solid solutions, Physics and Chemistry of Solid State, 24(3), 564 (2023);



How to Cite

Matkivskyi О., Balan, V., Halushchak М., Dadiak І., Mateik, G., & Horichok І. (2024). Thermal conductivity of GeBiTe solid solutions. Physics and Chemistry of Solid State, 25(1), 185–190.



Scientific articles (Physics)

Most read articles by the same author(s)