The kinetics of adsorption binding of Ba2+ ions by trimethylsilylated silica


  • I. F. Myronyuk Vasyl Stefanyk Precarpathian National University
  • H. V. Vasylyeva Uzhhorod National University
  • V. I. Mandzyuk Vasyl Stefanyk Precarpathian National University
  • N. A. Bezruka Ivano-Frankivsk National Medical University
  • T. V. Dmytrotsa Ivano-Frankivsk National Medical University



silica, silanols, chemosorption, trimethylsilyl groups, adsorption binding of ions


It was established that incomplete substitution of free silanols of fumed silica surface on (CH3)3Si-groups leads to an increase in the ability of modified SiO2 to adsorb Ba2+ cations from an electrolyte solution. Silica with 48.3% of trimethylsilyl (TMS) groups adsorbs 1.8 mmol·g-1 of Ba2+ cations from 0.01 M BaCl2 solution, that in 3 times more than the adsorption of these cations by unmodified silica. It was found that the adsorption of cations by basic and modified silica is well described by the pseudo-second order Lagergren equation. The high adsorption activity of silica with chemisorbed TMS-groups is due to the formation of local regions with relatively large values of negative and positive electrostatic potentials in the vicinity of grafted TMS-groups.


[1] R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry (Wiley, New York, 1979).

[2] A. A. Chuiko, The chemistry of silica surface (UkrINTEI, Kiev, 2001) (in russian).

[3] A. A. Chuiko, The medical chemistry and clinical application of silica (Naukova dumka, Kiev, 2003) (in russian).

[4] A. A. Chuiko, Yu. I. Gorlov, V. V. Lobanov, Structure and chemistry of silica surface (Naukova dumka, Kiev, 2007) (in russian).

[5] V. A. Tertykh, A. A. Belyakova, Chemical reactions involving the silica surface (Naukova dumka, Kiev, 1991) (in russian).

[6] V. M. Gun’ko, V. V. Turov, I. F. Myronyuk, O. V. Goncharuk, E. M. Pakhlov, N. A. Bezruka, E. Skwarek, W. Janusz, J.P. Blitz, J. Coll. Int. Sci., 434, 28 (2014).

[7] I. F. Myronyuk, V. I. Mandzyuk, N. A. Bezruka, Ye. P. Voronin, O. V. Goncharuk, V. M. Ogenko, Physics and Chemistry of Solid State, 15(2), 358 (2014) (in ukrainian).

[8] І.F. Myronyuk, B.M. Yaremchuk, T.V. Gergel, V.І. Mаndzyuk, Physycs and Chemistry of Solid State, 7(4), 731 (2006) (in ukrainian).

[9] І. F. Myronyuk, V. L. Chelyadyn, R. R. Yakubovskyi, V. O. Kotsyubynsky, Physycs and Chemistry of Solid State, 11(2), 409 (2010) (in ukrainian).

[10] G. Schwarzenbach, H. Flaschka, Complexometric titration (Khimia, Moscow, 1970) (in russian).

[11] V. P. Vasiliev, Analytical chemistry (Vyshcha shkola, Moskow, 1989) (in russian).

[12] V. I. Kabachnyi, L. K. Osipenko, L. D. Hrytsan, et. al., Physical and colloidal chemistry (Prapor, Kharkiv, 1999) (in ukrainian).

[13] M. Kanna, S. Wongnawa, P. Sherdshoopongse, P. Boonsin, Songklanakarin J. Sci. Technol., 27(5), 1017 (2005).

[14] A. K. Agarwal, M. S. Kadu, J. Chem. Technol. Metall., 50(5), 601 (2015).

[15] I. Sharma, D. Goyal, J. Sci. Ind. Res., 68, 640 (2009).

[16] L. A. Belyakova, O. M. Shvets, Chem. Phys. Tech. Surf., 1(3), 274 (2010).

[17] W. Rudzinski, W. Plazinsky, Phys. Chem B., 110(33), 16514 (2006).

[18] Y.-S. Ho, Scientometrics, 59(1), 171 (2004).

[19] Y.-S. Ho, G. McKay, Proc. Biochem., 34, 451 (1999).

[20] S. A. Nedil’ko, Mathematical methods in chemistry (Lubid’, Kyiv, 2005) (in ukrainian).

[21] M. Ezekiel, K.A. Fox, Methods of correlation and regression analysis, linear and curvilinear (Wiley, New York 1959).

[22] I. F. Myronyuk, Y. P. Voronin, V. І. Mandzyuk, N. A. Bezruka, T. V. Dmytrotsa, J. Nano- Electron. Phys., 9(5), 05030-1 (2017).

[23] I. F. Mironyuk, V. V. Lobanov, V. M. Ogenko, Theor. Exp. Chem., 36(5), 264 (2000).

[24] I. F. Myronyuk, V. V. Lobanov, V. M. Ogenko, Physics and Chemistry of Solid State, 1(2), 177 (2000) (in ukrainian).




How to Cite

Myronyuk, I. F., Vasylyeva, H. V., Mandzyuk, V. I., Bezruka, N. A., & Dmytrotsa, T. V. (2018). The kinetics of adsorption binding of Ba2+ ions by trimethylsilylated silica. Physics and Chemistry of Solid State, 19(1), 66–73.