Changes in the spectral characteristics of the liquid crystalline active medium doped with multi-walled carbon nanotubes under the influence of nitrogen dioxide
DOI:
https://doi.org/10.15330/pcss.26.1.23-28Keywords:
optics, liquid crystal, nitrogen dioxide, LC sensorsAbstract
The paper examines the effect of nitrogen dioxide (NO2) on the spectral characteristics of a liquid crystal mixture doped with multilayer nanotubes. The liquid crystal mixture was synthesized based on cholesteric liquid crystal BLO-61 and nematic 5CB (26%) with a wide range of mesophase existence temperatures, the concentration of nanotubes was up to 0.7%. It was established that the introduction of nanotubes into the mixture leads to a significant increase in the sensitivity of the mixture to inorganic substances due to increased absorption. An analysis of the change in the spectral properties of the mixture at different concentrations of nitrogen dioxide in the sensor volume was performed and the coefficient of spectral sensitivity was determined. The obtained results indicate the possible use of this mixture as a sensitive sensor element for the detection of nitrogen compounds in the future.
References
K.C. To, S. Ben-Jaber, &, I.P. Parkin, Recent developments in the field of explosive trace detection. ACS nano, 14(9), 10804 (2020); https://doi.org/10.1021/acsnano.0c01579.
J.S. Caygill, F. Davis, & S.P. Higson, Current trends in explosive. detection techniques. Talanta, 88, 14 (2012); https://doi.org/10.1016/j.talanta.2011.11.043.
L. Capineri, & E.K. Turmuş, (Eds.). Explosives detection: Sensors, electronic systems and data processing. (Springer Nature 2020).
R. Yoo, H.S. Lee, W. Kim, Y. Park, A. Koo, S.H. Jin, & W. Lee, Selective detection of nitrogen-containing compound gases. Sensors, 19(16), 3565 (2019); https://doi.org/10.3390/s19163565.
J. Song, M. Li, C. Zou, T. Cao, X. Fan, B. Jiang, & P.A. Peng, Molecular characterization of nitrogen-containing compounds in humic-like substances emitted from biomass burning and coal combustion. Environmental Science & Technology, 56(1), 119 (2021); https://doi.org/10.1021/acs.est.1c04451.
A. Leal‐Junior, M.S. Soares, P.M. de Almeida, & C. Marques, Cholesteric liquid crystals sensors based on nanocellulose derivatives for improvement of quality of human life: A review. Advanced Sensor Research, 2(10), 2300022 (2023); https://doi.org/10.1002/adsr.202300022.
A. Sen, K.A. Kupcho, B.A. Grinwald, H.J. VanTreeck, & B.R. Acharya, Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide. Sensors and Actuators B: Chemical, 178, 222 (2013); https://doi.org/10.1016/j.snb.2012.12.036.
P.L. Kebabian, S.C. Herndon, & A. Freedman, Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy. Analytical chemistry, 77(2), 724 (2005); https://doi.org/10.1021/ac048715y.
Z. Mykytiuk, A. Fechan, V. Petryshak, G. Barylo, O. Boyko, Optoelectronic multi-sensor of SO2 and NO2 gases.Modern Problems of Radio Engineering, Telecommunications and Camputer Science, Proceedings of the 13th International Conference on TCSET 2016, 402-405, 7452070 (2016).
Z.M. Mykytyuk, H.I. Barylo, I.P. Kremer, Y.M. Kachurak, & O.Y. Shymchyshyn, Sensitive liquid crystal composites for optical sensors. Molecular Crystals and Liquid Crystals, 768(2), 1-8 (2024); https://doi.org/10.1080/15421406.2023.2235865.
O. Sushynskyi, M. Vistak, Z. Gotra, F. Andriy, Z. Mykytyuk, Silicon dioxide nanoporous structure with liquid crystal for optical. Proceedings of SPIE- The International Society for Optical Engineering, 9127, 91271F (2014); https://doi.org/10.1117/12.2051742.
Z.M. Mykytyuk, Y.M. Kachurak, M.V. Vistak, I.T. Kogut, R.L. Politanskyi, O.Y. Shymchyshyn, & P.V. Vashchenko, Induced blue phase of cholesteric-nematic mixtures under the action of acetone vapors. Physics and Chemistry of Solid State, 25(1), 109 (2024); https://doi.org/10.15330/pcss.25.1.109-113.
E. Haller, H. Köppel, & L.S. Cederbaum, The visible absorption spectrum of NO2: A three-mode nuclear dynamics investigation. Journal of molecular spectroscopy, 111(2), 377 (1985); https://doi.org/10.1016/0022-2852(85)90013-X.
S.S. Brown, Absorption spectroscopy in high-finesse cavities for atmospheric studies. Chemical reviews, 103(12), 5219 (2003).
S. Berciaud, L. Cognet, P. Poulin, R.B. Weisman, & B. Lounis, Absorption spectroscopy of individual single-walled carbon nanotubes. Nano letters, 7(5), 1203 (2007); https://doi.org/10.1021/nl062933k.
C. Dong, Z. Zhou, X. Gu, Y. Zhang, G. Tong, Z. Wu, & F. Tang, Dynamic Spectral Modulation on Meta‐Waveguides Utilizing Liquid Crystal. Advanced Science, 10(34), 2304116 (2023); https://doi.org/10.1002/advs.202304116.
W. Wojcik, M. Vistak, Z. Mykytyuk, R. Politanskyi, I. Diskovskyi, O. Sushynskyi, I. Kremer, T. Prystay, A. Jaxylkova, I. Shedreyeva, Technical solutions and SPICE modeling of optical sensors. Przeglad Electrotechniczny, 96(10), 173 (2020); https://doi.org/10.15199/48.2020.10.18.
M.J. Dewar, & R.S. Goldberg, Effects of central and terminal groups on nematic mesophase stability. The Journal of Organic Chemistry, 35(8), 2711 (1970).
M. Hagar, H.A. Ahmed, & G.R. Saad, Mesophase stability of new Schiff base ester liquid crystals with different polar substituents. Liquid Crystals, 45(9), 1324 (2018); https://doi.org/10.1080/02678292.2018.1435831.
D. Ster, U. Baumeister, J.L. Chao, C. Tschierske, & G. Israel, Synthesis and mesophase behaviour of ionic liquid crystals. Journal of Materials Chemistry, 17(32), 3393 (2007); https://doi.org/10.1039/B705519F.
M. Khan, & S.Y. Park, Liquid crystal-based proton sensitive glucose biosensor. Analytical chemistry, 86(3), 1493 (2014); https://doi.org/10.1021/ac402916v.
O. Batir, E. Bat, & E. Bukusoglu, Strain-enhanced sensitivity of polymeric sensors templated from cholesteric liquid crystals. Soft Matter, 16(29), 6794. (2020); https://doi.org/10.1039/D0SM00905A.
B. Montrucchio, A. Sparavigna, & A. Strigazzi, A new image processing method for enhancing the detection sensitivity of smooth transitions in liquid crystals. Liquid crystals, 24(6), 841(1998); https://doi.org/10.1080/026782998206669.
Z.M. Mykytyuk, M.V. Vistak, I.T. Kogut, & V.S. Petryshak, Highly sensitive active medium of sensor NO2, based on cholesteric nematic mixture with impurities of carbon nanotubes. Physics and Chemistry of Solid State, 22(3), 426 (2021); https://doi.org/10.15330/pcss.22.3.426-431.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I. Kogut, Z. Mykytyuk, Y. Kachurak, M. Vistak, O. Blavt, I. Kremer, O. Shymchyshyn, R. Tymkovich

This work is licensed under a Creative Commons Attribution 3.0 Unported License.